展开全部
1、可以用公式求和
n(n+1)=n²+n
1*2+2*3+3*4+……+n(n+1)
=1+2²+3²+…+n²+1+2+3+…+n
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
2、可以用裂项求和
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
1*2+2*3+3*4+……+n(n+1)
=[(1*2*3-0*1*2)+(2*3*4-1*2*3)+(3*4*5-2*3*4)+…+n(n+1)(n+2)-(n-1)n(n+1)]/3
=n(n+1)(n+2)/3
n(n+1)=n²+n
1*2+2*3+3*4+……+n(n+1)
=1+2²+3²+…+n²+1+2+3+…+n
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
2、可以用裂项求和
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
1*2+2*3+3*4+……+n(n+1)
=[(1*2*3-0*1*2)+(2*3*4-1*2*3)+(3*4*5-2*3*4)+…+n(n+1)(n+2)-(n-1)n(n+1)]/3
=n(n+1)(n+2)/3
展开全部
1*2+2*3+3*4+…+n(n+1)
=(1^2+1)+(2^2+2)+(3^2+3)+.......+(n^2+n)
=(1^2+2^2+3^2+.....+n^2)+(1+2+3+....+n)
=[n(n+1)(2n+1)/6]+[n(1+n)/2]
=n(n+1)(n+2)/3
=(1^2+1)+(2^2+2)+(3^2+3)+.......+(n^2+n)
=(1^2+2^2+3^2+.....+n^2)+(1+2+3+....+n)
=[n(n+1)(2n+1)/6]+[n(1+n)/2]
=n(n+1)(n+2)/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n(n+1)=n^2+n
1*2+2*3+3*4+……+n(n+1)
=1^2+1+2^2+2+3^2+3+.....+n^2+n
=1^2+2^2+3^2+....+n^2+1+2+3+....+n
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)/2*[(2n+1)/3+1]
=n(n+1)/2*(2n+4)/3
=n(n+1)/2*2(n+2)/3
=n(n+1)(n+2)/3
1*2+2*3+3*4+……+n(n+1)
=1^2+1+2^2+2+3^2+3+.....+n^2+n
=1^2+2^2+3^2+....+n^2+1+2+3+....+n
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)/2*[(2n+1)/3+1]
=n(n+1)/2*(2n+4)/3
=n(n+1)/2*2(n+2)/3
=n(n+1)(n+2)/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=n(n+1)=n^2+n
Sn=n(n+1)(2n+1)/6+n(n+1)/2=n(n+1)(2n+1+3)/6=n(n+1)(n+2)/3
Sn=n(n+1)(2n+1)/6+n(n+1)/2=n(n+1)(2n+1+3)/6=n(n+1)(n+2)/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询