求经过点P(6,-4)且被定圆x+y=20截得弦长为6√2的直线AB的方程
展开全部
卢旭霞:圆O:X^2+Y^2=20,圆心在原点,半径的平方R^2=20
截得弦长为6√2,则弦长之半为3√2
圆心(即原点)到弦AB的距离d = √{R^2-(3√2)^2} = √(20-18)=√2
令AB所在直线斜率k
过点P(6,-4)
∴y=k(x-6)-4 ,kx-y-6k-4 = 0
原点(即圆心)到kx-y-6k-4 = 0的距离为√2
|-6k-4| / √(k^2+1) = √2
(6k-4)^2=2(k^2+1)
36k^2-48k+16 = 2k^2+2
17k^2-24k+7 = 0
(17k-7)(k-1) = 0
k=7/17,或k=1
7/17x-y-6*7/17-4 = 0,即7x-17y-110=0
或者:
x-y-10=0
截得弦长为6√2,则弦长之半为3√2
圆心(即原点)到弦AB的距离d = √{R^2-(3√2)^2} = √(20-18)=√2
令AB所在直线斜率k
过点P(6,-4)
∴y=k(x-6)-4 ,kx-y-6k-4 = 0
原点(即圆心)到kx-y-6k-4 = 0的距离为√2
|-6k-4| / √(k^2+1) = √2
(6k-4)^2=2(k^2+1)
36k^2-48k+16 = 2k^2+2
17k^2-24k+7 = 0
(17k-7)(k-1) = 0
k=7/17,或k=1
7/17x-y-6*7/17-4 = 0,即7x-17y-110=0
或者:
x-y-10=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询