n次根号下a的极限是多少?
1个回答
展开全部
n次根号下a可以写成a的n分之一次方,n无限大时,n分之1无限趋近于0,n次根号下a就约等于a的0次方,任何数(0除外)的0次方都等于1,所以当n趋近与无穷大时n次根号下a的极限是1。
如果0<a<1,令t=1/a,则t>1
原式=lim(n→∞)a^(1/n)=lim(n→∞)1/t^(1/n)=1/(lim(n→∞)t^(1/n))=(a>1的结论)1/1=1
因为n次根号下n=n^(1/n)
所以,当n—>∞时,1/n——>0
所以,n^(1/n)——>n^0——>1
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询