梯形中位线的证明过程
4个回答
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
上底的一点延长线与下底延长线交一点,可证上底于下底延长线上除去下底的一段,在利用三角形中位线的性质,所以梯形中位线平行且等于(上底+下底)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梯形ABCD,E为AB的中点,F为CD的中点,连接EF,
求证:EF平行两底且等于两底和的一半。
证明:连接AF,并且延长AF于BC的延长线交于O
在△ADF和△FCO中
∵ AD//BC
∴ ∠D=∠1
又∵ ∠2=∠3 DF=CF
∴ △ADF≌△FCO
∵ 点E,F分别是AB,AO中点
∴ EF为三角形ABO中位线
∴ EF∥OB即EF∥BC
∵ AD//BC
∴ EF∥BC∥AD(EF平行两底)
∵ EF为三角形ABO中位线
∴ 2EF=OB OB=BC+CO CO=AD
∴ 2EF=BC+AD
∴ EF=(BC+AD)÷2(EF等于两底和的一半)
梯形的中位线平行于上下两底且等于两底和的一半
求证:EF平行两底且等于两底和的一半。
证明:连接AF,并且延长AF于BC的延长线交于O
在△ADF和△FCO中
∵ AD//BC
∴ ∠D=∠1
又∵ ∠2=∠3 DF=CF
∴ △ADF≌△FCO
∵ 点E,F分别是AB,AO中点
∴ EF为三角形ABO中位线
∴ EF∥OB即EF∥BC
∵ AD//BC
∴ EF∥BC∥AD(EF平行两底)
∵ EF为三角形ABO中位线
∴ 2EF=OB OB=BC+CO CO=AD
∴ 2EF=BC+AD
∴ EF=(BC+AD)÷2(EF等于两底和的一半)
梯形的中位线平行于上下两底且等于两底和的一半
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在梯形ABCD中,AD平行BC,E,F是AB,CD中点
延长AF交BC延长线于M,不难证明AD=CM
EF是三角形ABM的中位线,所以EF平行BM,且EF=BM/2
故EF 和AD,BC平行,且EF=(AD+BC)/2
延长AF交BC延长线于M,不难证明AD=CM
EF是三角形ABM的中位线,所以EF平行BM,且EF=BM/2
故EF 和AD,BC平行,且EF=(AD+BC)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询