线性代数证明题 m>n m个n维向量为线性相关 证明:R[α1,α2,...αm]<m

lry31383
高粉答主

2011-05-31 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
即是要证明: 向量的个数大于向量的维数时, 向量组线性相关
证明:
设 α1,...,αm 是n维列向量
令 A=(α1,...,αm).
则 r(A) ≤ min{m,n} [ 矩阵的秩不超过它的行数和列数 ]
因为 m>n
所以 r(A) ≤ n < m.
所以 r(α1,...,αm) =r(A)<m. [ 矩阵的秩等于其列秩和行秩 ]
即 向量组α1,...,αm线性相关.

满意请采纳^_^
低调侃大山
2011-05-31 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374602

向TA提问 私信TA
展开全部
m个向量构成n×m矩阵设为A=[α1,α2,...αm]
因为矩阵的秩小于等于行数与列数的最小值,
而 m>n
所以R(A)<=n

矩阵的秩=列向量组的秩=行向量组的秩
从而 R[α1,α2,...αm]=R(A)<=n<m
即 R[α1,α2,...αm]<m
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式