如图,点P是双曲线y=k1/x(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点 ,交

赶紧啊,马上用啊,谢谢了各位大哥大姐... 赶紧啊,马上用啊,谢谢了各位大哥大姐 展开
627974270
2011-06-08 · TA获得超过251个赞
知道答主
回答量:66
采纳率:0%
帮助的人:31.2万
展开全部
(1)由反比例函数的图形和性质可知:四边形OAPB面积为K1,△OAE与△OBF面积之和为K2,可求四边形PEOF的面积;
(2)①根据题意,易写点A、B、E、F坐标,可求线段PA、PE、PB、PF的长,发现PA:PE=PB:PF,又∠APB=∠EPF,依据相似三角形判定,可得△APB∽△EPF,∠PAB=∠PEF,从而得出EF与AB的位置关系.
②如果过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.由S△EFQ=S△PEF,可得出S2的表达式,然后根据自变量的取值范围得出结果.解答:解:(1)四边形PEOF的面积S1=四边形PAOB的面积+三角形OAE的面积+三角形OBF的面积=|k1|+k2;(3分)

(2)①EF∥AB.(4分)
证明:如图,由题意可得A(-4,0),B(0,3), , ,∴PA=3,PE= ,PB=4,PF=
∴ ,
∴ (6分)
又∵∠APB=∠EPF
∴△APB∽△EPF
∴∠PAB=∠PEF
∴EF∥AB;(7分)

②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q,
由上知M(0, ),N( ,0),Q( , )(8分)
而S△EFQ=S△PEF
∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN
=
=
= (10分)
当k2>-6时,S2的值随k2的增大而增大,而0<k2<12,(11分)
∴0<S2<24,S2没有最小值.(12分)
挽艳惜3163
2012-04-29 · TA获得超过5.9万个赞
知道大有可为答主
回答量:3.5万
采纳率:0%
帮助的人:2443万
展开全部
(1)由反比例函数的图形和性质可知:四边形OAPB面积为K1,△OAE与△OBF面积之和为K2,可求四边形PEOF的面积;
(2)①根据题意,易写点A、B、E、F坐标,可求线段PA、PE、PB、PF的长,发现PA:PE=PB:PF,又∠APB=∠EPF,依据相似三角形判定,可得△APB∽△EPF,∠PAB=∠PEF,从而得出EF与AB的位置关系.
②如果过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.由S△EFQ=S△PEF,可得出S2的表达式,然后根据自变量的取值范围得出结果.解答:解:(1)四边形PEOF的面积S1=四边形PAOB的面积+三角形OAE的面积+三角形OBF的面积=|k1|+k2;(3分)

(2)①EF∥AB.(4分)
证明:如图,由题意可得A(-4,0),B(0,3), , ,∴PA=3,PE= ,PB=4,PF=
∴ ,
∴ (6分)
又∵∠APB=∠EPF
∴△APB∽△EPF
∴∠PAB=∠PEF
∴EF∥AB;(7分)

②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q,
由上知M(0, ),N( ,0),Q( , )(8分)
而S△EFQ=S△PEF
∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN
=
=
= (10分)
当k2>-6时,S2的值随k2的增大而增大,而0<k2<12,(11分)
∴0<S2<24,S2没有最小值.(12分)赞同23| 评论
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1006513284
2012-05-12 · TA获得超过209个赞
知道答主
回答量:162
采纳率:0%
帮助的人:24万
展开全部
哥哥,你的题目呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式