请用判别式法计算 !已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么向量PA*PB 的最小值为

请用判别式法计算!已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么向量PA*PB的最小值为为什么x^4可以直接用判别式不用考虑x^4取值范围??... 请用判别式法计算 !已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么向量PA*PB 的最小值为

为什么x^4 可以直接用判别式 不用考虑x^4取值范围??
展开
fnxnmn
2011-06-02 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6691万
展开全部
这是2010年高考题全国卷里的一道选择题。
x^2的取值范围要考虑!
请你看我下面的详细解答:

设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2

x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t2<0, t1t2>0,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去。
当y≥-3+2√2时,t1+t2>0, t1t2>0,
这时t1,t2都是正值,符合题意。

故(向量PA•向量PB)min=-3+2√2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式