在三角形ABC中,a,b,c分别是角A,B,C的对边,向量m=(b,2a-c),向量n=(cosB,cosC),且向量m平行向量n,则B的大小
展开全部
By cosine rule
a^2 = b^2+c^2 - 2bc(cosA)
m//n
cosC/cosB = (2a-c)/b
bcosC=(2a-c)cosB
2ab(cosC) = 2a(2a-c)cosB
a^2+b^2-c^2 = 2a(2a-c)cosB
= (4a^2)cosB - 2ac(cosB)
= (4a^2)cosB - a^2-c^2 +b^2
(4a^2)cosB = 2a^2
cosB = 1/2
B = π/3
a^2 = b^2+c^2 - 2bc(cosA)
m//n
cosC/cosB = (2a-c)/b
bcosC=(2a-c)cosB
2ab(cosC) = 2a(2a-c)cosB
a^2+b^2-c^2 = 2a(2a-c)cosB
= (4a^2)cosB - 2ac(cosB)
= (4a^2)cosB - a^2-c^2 +b^2
(4a^2)cosB = 2a^2
cosB = 1/2
B = π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询