数列1^3+2^3+3^3+...+n^3前n项和。要过程。谢谢!
3个回答
展开全部
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]^2
1^3+2^3+...+n^3=[n(n+1)/2]^2
展开全部
1^3+2^3+3^3+…………n^3=(1+2+3+............+n)^2
当n=1时
左边1^3=1 右边1^2=1
左边=右边
假设当n=k时等式成立
1^3+2^3+3^3+…k^3=(1+2+3+............+k)^2
则当n=k+1时
1^3+2^3+3^3+…k^3+(k+1)^3
=(1+2+3+............+k)^2+(k+1)^3 1+2+3....+k=k(k+1)/2 等差数列
=k^2(1+k)^2/4+(k+1)^3
=(1+k)^2(k^2/4+k+1)
=(1+k)^2(k^2+4k+4)/4
=(k+1)^2(k+2)^2/4
=[(k+1)(k+1+1)/2]^2
=(1+2+3......+k+k+1)^2 1+2+3+...k+k+1=(k+1)(k+1+1)/2 也是等差数列
所以当n=k+1等式也成立
所以
1^3+2^3+3^3+…………n^3=(1+2+3+............+n)^2
综上
1³+……+n³=[n(n+1)/2]²
当n=1时
左边1^3=1 右边1^2=1
左边=右边
假设当n=k时等式成立
1^3+2^3+3^3+…k^3=(1+2+3+............+k)^2
则当n=k+1时
1^3+2^3+3^3+…k^3+(k+1)^3
=(1+2+3+............+k)^2+(k+1)^3 1+2+3....+k=k(k+1)/2 等差数列
=k^2(1+k)^2/4+(k+1)^3
=(1+k)^2(k^2/4+k+1)
=(1+k)^2(k^2+4k+4)/4
=(k+1)^2(k+2)^2/4
=[(k+1)(k+1+1)/2]^2
=(1+2+3......+k+k+1)^2 1+2+3+...k+k+1=(k+1)(k+1+1)/2 也是等差数列
所以当n=k+1等式也成立
所以
1^3+2^3+3^3+…………n^3=(1+2+3+............+n)^2
综上
1³+……+n³=[n(n+1)/2]²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-02
展开全部
=(1+2+3+...n)^2
=n^2*(n+1)^2/4
可以用数学归纳法证明
=n^2*(n+1)^2/4
可以用数学归纳法证明
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询