正/余弦定理 在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且a=4bsinA,求cosB
展开全部
a/sinA=b/sinB
=> 4b=b/sinB
=> sinB=1/4
=> cosB=四分之根号十五
=> 4b=b/sinB
=> sinB=1/4
=> cosB=四分之根号十五
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinA=4sinAsinB
sinB=1/4
cosB=土√15/4
sinB=1/4
cosB=土√15/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-03
展开全部
由正弦定理得:a/sinA=b/sinB=2*R
由a=4bsinA 得 4b=b/sinB 而b>0 sinB=0.25
cosB=根号 1—sinB的平方=4分之根号15
由a=4bsinA 得 4b=b/sinB 而b>0 sinB=0.25
cosB=根号 1—sinB的平方=4分之根号15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询