证明sin(2a+b)/sina-2cos(a+b)=sinb/sina
展开全部
sin(2a+b)=sin2acosb+cos2asinb=2sinacosacosb+(1-2sin²a)sinb
2cos(a+b)=2cosacosb-2sinasinb
代入原式得:2cosacosb+sinb/sina-2sinasinb-2cosacosb+2sinasinb=sinb/sina
即:sin(2a+b)/sina-2cos(a+b)=sinb/sina
就是把sin(2a+b)和2cos(a+b)展开,代入等式左边即可
2cos(a+b)=2cosacosb-2sinasinb
代入原式得:2cosacosb+sinb/sina-2sinasinb-2cosacosb+2sinasinb=sinb/sina
即:sin(2a+b)/sina-2cos(a+b)=sinb/sina
就是把sin(2a+b)和2cos(a+b)展开,代入等式左边即可
展开全部
题误!原题等价于证明:[sin(2a+b)-sinb]/sinb-2cos(a+b)=[sinb-sina]/sinb,而sin(2a+b)-sinb=2sinacos(a+b),所以只要证明2cos(a+b)[sina/sinb-1]=(sinb-sina)/sina……①,若a=b,①式显然成立,若a≠b,则只需证明2cos(a+b)/sinb=-1/sina,即需证明2cos(a+b)sina+sinb=0,而sinb=sin(a+b-a)=sin(a+b)cosa-sinacos(a+b),所以要证sin(a+b)cosa+sinacos(a+b)=sin(2a+b)=0成立,而题设没有这一条件!事实上令a=-b,原等式显然不成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只要把sin(2a+b)按公式展开再合并就可以了,详细如下
2a+b=(a+b)+a
左边=sin(a+b)cosa/sina+cos(a+b)sina/sina-2cos(a+b)
=sin(a+b)cosa/sina-cos(a+b)
=sin(a+b)cosa/sina-cos(a+b)sina/sina
=sin(a+b-a)/sina
=右边
2a+b=(a+b)+a
左边=sin(a+b)cosa/sina+cos(a+b)sina/sina-2cos(a+b)
=sin(a+b)cosa/sina-cos(a+b)
=sin(a+b)cosa/sina-cos(a+b)sina/sina
=sin(a+b-a)/sina
=右边
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询