求f(x)= ∫ [0到x](t+2)/(t^2+2t+2)dt在[0,1]上的最大值和最小值。
1个回答
展开全部
f'(x)=(x+2)/(x²+2x+2),分母x²+2x+2=(x+1)²+1>0,分子x+2在[0,1]上也>0,
故f'(x)>0,x∈[0,1],所以f(x)在[0,1]上单调增,
f(x)min=f(0)=0,
f(x)max=f(1)=∫[0->1](t+2)/(t²+2t+2)dt=∫[0->1](t+1)/[(t+1)²+1]dt+∫[0->1] 1/[(t+1)²+1]dt
=(1/2)∫[0->1] 1/[(t+1)²+1]d[(t+1)²+1] + ∫[0->1] 1/[(t+1)²+1]d(t+1)
=(1/2)ln[(t+1)²+1] | [0->1] + arctan(t+1) | [0->1]
=(1/2)ln(5/2)+arctan2-π/4
故f'(x)>0,x∈[0,1],所以f(x)在[0,1]上单调增,
f(x)min=f(0)=0,
f(x)max=f(1)=∫[0->1](t+2)/(t²+2t+2)dt=∫[0->1](t+1)/[(t+1)²+1]dt+∫[0->1] 1/[(t+1)²+1]dt
=(1/2)∫[0->1] 1/[(t+1)²+1]d[(t+1)²+1] + ∫[0->1] 1/[(t+1)²+1]d(t+1)
=(1/2)ln[(t+1)²+1] | [0->1] + arctan(t+1) | [0->1]
=(1/2)ln(5/2)+arctan2-π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询