工程问题公式 5

 我来答
HJJK80
推荐于2017-11-24 · TA获得超过353个赞
知道答主
回答量:32
采纳率:0%
帮助的人:24.1万
展开全部
(1)一般公式:
   工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷ 工作时间=工作效率
(2)用假设工作总量为“1”的方法解工程问题的公式:
  1÷工作时间=单位时间内完成工作总量的几分之几;
  1÷单位时间能完成的几分之几=工作时间。
  (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
总数÷总份数=平均数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、加数+加数=和 和-一个加数=另一个加数
6、被减数-减数=差 被减数-差=减数 差+减数=被减数
7、因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
数学图形计算公式
1、正方形:C-周长 S-面积 a-边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a=a2
2、正方体:V-体积 a-棱长
表面积=棱长×棱长×6 S表=a×a×6=6a2
体积=棱长×棱长×棱长 V=a×a×a=a3
3、长方形: C-周长 S-面积 a-边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体:V-体积 S-面积 a-长 b-宽 h-高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5、三角形:S-面积 a-底 h-高
面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6、平行四边形:S-面积 a-底 h-高
面积=底×高 S=ah
7、梯形:S-面积 a-上底 b-下底 h-高
面积=(上底+下底)×高÷2
8、圆形:S-面积 C-周长 ∏-圆周率 d-直径 r-半径
周长=直径×圆周率=2×圆周率×半径 C=∏d=2∏r
面积=半径×半径×圆周率 S=∏r2
9、圆柱体:V-体积 h-高 S-底面积 r-底面半径 C-底面周长
侧面积=底面周长×高 S侧=Ch
表面积=侧面积+底面积×2 S表=S侧+2∏r2
体积=底面积×高 V=∏r2h
体积=侧面积÷2×半径
10、圆锥体:V-体积 h-高 S-底面积 r-底面半径
体积=底面积×高÷3
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米(km)=1000米(m) 1米(m)=10分米(dm) 1分米(dm)=10厘米(cm) 1米(m)=100厘米(cm) 1厘米(cm)=10毫米(mm)
面积单位换算
1平方千米(km2)=100公顷(ha) 1公顷(ha)=10000平方米(m2) 1平方米(m2) =100平方分米(dm2)
1平方分米(dm2)=100平方厘米(cm2) 1平方厘米(cm2)=100平方毫米(mm2)
体(容)积单位换算
1立方米(m3)=1000立方分米(dm3) 1立方分米(dm3)=1000立方厘米(cm3) 1立方分米(dm3)=1升(l)
1立方厘米(cm3) =1毫升(ml) 1立方米(m3) =1000升(l)
重量单位换算
1吨(t)=1000 千克(kg) 1千克(kg)=1000克(g) 1千克(kg)=1公斤(kg)
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天
1日=24小时(h) 1小时(h)=60分(s) 1分(min)=60秒(s) 1小时(h)=3600秒(s)
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
樱花凌芒
2012-06-03 · TA获得超过167个赞
知道答主
回答量:94
采纳率:0%
帮助的人:24.4万
展开全部
在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是
工作量=工作效率×时间.
在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.
举一个简单例子.
一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?
一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,

再根据基本数量关系式,得到
所需时间=工作量÷工作效率

=6(天)•
两人合作需要6天.
这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.
为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是
30÷(3+ 2)= 6(天)

数计算,就方便些.

∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也

需时间是

因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.
一、两个人的问题
标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.
例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?

答:乙需要做4天可完成全部工作.
解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是
(18- 2 × 3)÷ 3= 4(天).
解三:甲与乙的工作效率之比是
6∶ 9= 2∶ 3.
甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).
例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
解:共做了6天后,
原来,甲做 24天,乙做 24天,
现在,甲做0天,乙做40=(24+16)天.
这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率
如果乙独做,所需时间是

如果甲独做,所需时间是

答:甲或乙独做所需时间分别是75天和50天.
例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
解:先对比如下:
甲做63天,乙做28天;
甲做48天,乙做48天.
就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的

甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做

因此,乙还要做
28+28= 56 (天).
答:乙还需要做 56天.
例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?
解一:甲队单独做8天,乙队单独做2天,共完成工作量

余下的工作量是两队共同合作的,需要的天数是

2+8+ 1= 11(天).
答:从开始到完工共用了11天.
解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作
(30- 3 × 8- 1× 2)÷(3+1)= 1(天).
解三:甲队做1天相当于乙队做3天.
在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.
4=3+1,
其中3天可由甲队1天完成,因此两队只需再合作1天.
例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?
解一:如果16天两队都不休息,可以完成的工作量是

由于两队休息期间未做的工作量是

乙队休息期间未做的工作量是

乙队休息的天数是

答:乙队休息了5天半.
解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.
两队休息期间未做的工作量是
(3+2)×16- 60= 20(份).
因此乙休息天数是
(20- 3 × 3)÷ 2= 5.5(天).
解三:甲队做2天,相当于乙队做3天.
甲队休息3天,相当于乙队休息4.5天.
如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是
16-6-4.5=5.5(天).
例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.
设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.
8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要
(60-4×8)÷(4+3)=4(天).
8+4=12(天).
答:这两项工作都完成最少需要12天.
例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他

要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?
解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
两人合作,共完成
3× 0.8 + 2 × 0.9= 4.2(份).
因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是
(30-3×8)÷(4.2-3)=5(天).
很明显,最后转化成“鸡兔同笼”型问题.
例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时

如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙6小时单独工作完成的工作量是

乙每小时完成的工作量是

两人合作6小时,甲完成的工作量是

甲单独做时每小时完成的工作量

甲单独做这件工作需要的时间是

答:甲单独完成这件工作需要33小时.
这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每

有一点方便,但好处不大.不必多此一举.
二、多人的工程问题
我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.
例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
解:设这件工作的工作量是1.

甲、乙、丙三人合作每天完成

减去乙、丙两人每天完成的工作量,甲每天完成

答:甲一人独做需要90天完成.
例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?
例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
解:甲做1天,乙就做3天,丙就做3×2=6(天).

说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了
2+6+12=20(天).
答:完成这项工作用了20天.
本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了

例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?
解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.

他们共同做13天的工作量,由甲单独完成,甲需要

答:甲独做需要26天.
事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.
例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?
解一:设这项工作的工作量是1.
甲组每人每天能完成

乙组每人每天能完成

甲组2人和乙组7人每天能完成

答:合作3天能完成这项工作.
解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.
现在已不需顾及人数,问题转化为:
甲组独做12天,乙组独做4天,问合作几天完成?

小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.
例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?
解一:仍设总工作量为1.

甲每天比乙多完成

因此这批零件的总数是

丙车间制作的零件数目是

答:丙车间制作了4200个零件.
解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.
乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知
乙、丙工作效率之比是16∶14=8∶7.
已知
甲、乙工作效率之比是 3∶2= 12∶8.
综合一起,甲、乙、丙三人工作效率之比是
12∶8∶7.
当三个车间一起做时,丙制作的零件个数是
2400÷(12- 8) × 7= 4200(个).
例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时.
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.
三人共同搬完,需要
60 × 2÷ (6+ 5+ 4)= 8(小时).
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时).
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时).
三、水管问题
从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.
例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?

甲每分钟注入水量是

乙每分钟注入水量是

因此水池容积是

答:水池容积是27立方米.
例16 有一些水管,它们每分钟注水量都相等.现在
按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?

答:开始时打开6根水管.
例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要

、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池?

,否则开甲管的过程中水池里的水就会溢出.

以后(20小时),池中的水已有

此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?
看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.
因此,答案是28小时,而不是30小时.
例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
解:先计算1个水龙头每分钟放出水量.
2小时半比1小时半多60分钟,多流入水
4 × 60= 240(立方米).
时间都用分钟作单位,1个水龙头每分钟放水量是
240 ÷ ( 5× 150- 8 × 90)= 8(立方米),
8个水龙头1个半小时放出的水量是
8 × 8 × 90,
其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).
打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要
5400 ÷(8 × 13- 4)=54(分钟).
答:打开13个龙头,放空水池要54分钟.
水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?
解:设满水池的水量为1.
A管每小时排出

A管4小时排出

因此,B,C两管齐开,每小时排水量是

B,C两管齐开,排光满水池的水,所需时间是

答: B, C两管齐开要 4 小时 48分才将满池水排完.
本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.
17世纪英国伟大的科学家牛顿写过一本《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.
例20 有三片牧场,场上草长得一样密,而且长得一

草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?
解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.

原有草+4星期新长的草=12×4.
原有草+9星期新长的草=7×9.
由此可得出,每星期新长的草是
(7×9-12×4)÷(9-4)=3.
那么原有草是
7×9-3×9=36(或者12×4-3×4).
对第三片牧场来说,原有草和18星期新长出草的总量是

这些草能让
90×7.2÷18=36(头)
牛吃18个星期.
答:36头牛18个星期能吃完第三片牧场的草.
例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?
“牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.
例21 画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分?
解:设一个入场口每分钟能进入的观众为1个计算单位.
从9点至9点9分进入观众是3×9,
从9点至9点5分进入观众是5×5.
因为观众多来了9-5=4(分钟),所以每分钟来的观众是
(3×9-5×5)÷(9-5)=0.5.
9点前来的观众是
5×5-0.5×5=22.5.
这些观众来到需要
22.5÷0.5=45(分钟).
答:第一个观众到达时间是8点15分.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shine昔年
推荐于2018-03-22
知道答主
回答量:2
采纳率:100%
帮助的人:3225
展开全部
(1)一般公式:
   工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷ 工作时间=工作效率
(2)用假设工作总量为“1”的方法解工程问题的公式:
  1÷工作时间=单位时间内完成工作总量的几分之几;
  1÷单位时间能完成的几分之几=工作时间。
  (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
总数÷总份数=平均数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、加数+加数=和 和-一个加数=另一个加数
6、被减数-减数=差 被减数-差=减数 差+减数=被减数
7、因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
数学图形计算公式
1、正方形:C-周长 S-面积 a-边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a=a2
2、正方体:V-体积 a-棱长
表面积=棱长×棱长×6 S表=a×a×6=6a2
体积=棱长×棱长×棱长 V=a×a×a=a3
3、长方形: C-周长 S-面积 a-边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体:V-体积 S-面积 a-长 b-宽 h-
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5、三角形:S-面积 a-底 h-高
面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6、平行四边形:S-面积 a-底 h-高
面积=底×高 S=ah
7、梯形:S-面积 a-上底 b-下底 h-高
面积=(上底+下底)×高÷2
8、圆形:S-面积 C-周长 ∏-圆周率 d-直径 r-半径
周长=直径×圆周率=2×圆周率×半径 C=∏d=2∏r
面积=半径×半径×圆周率 S=∏r2
9、圆柱体:V-体积 h-高 S-底面积 r-底面半径 C-底面周长
侧面积=底面周长×高 S侧=Ch
表面积=侧面积+底面积×2 S表=S侧+2∏r2
体积=底面积×高 V=∏r2h
体积=侧面积÷2×半径
10、圆锥体:V-体积 h-高 S-底面积 r-底面半径
体积=底面积×高÷3
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米(km)=1000米(m) 1米(m)=10分米(dm) 1分米(dm)=10厘米(cm) 1米(m)=100厘米(cm) 1厘米(cm)=10毫米(mm)
面积单位换算
1平方千米(km2)=100公顷(ha) 1公顷(ha)=10000平方米(m2) 1平方米(m2) =100平方分米(dm2)
1平方分米(dm2)=100平方厘米(cm2) 1平方厘米(cm2)=100平方毫米(mm2)
体(容)积单位换算
1立方米(m3)=1000立方分米(dm3) 1立方分米(dm3)=1000立方厘米(cm3) 1立方分米(dm3)=1升(l)
1立方厘米(cm3) =1毫升(ml) 1立方米(m3) =1000升(l)
重量单位换算
1吨(t)=1000 千克(kg) 1千克(kg)=1000克(g) 1千克(kg)=1公斤(kg)
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天
1日=24小时(h) 1小时(h)=60分(s) 1分(min)=60秒(s)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秦德文高俏
2020-01-13 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:25%
帮助的人:1974万
展开全部
数学工程问题的公式有三个:
工作量=工作效率×工作时间
工作效率=工作量÷工作时间
工作时间=工作量÷工作效率
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
baby王520love
2012-10-31
知道答主
回答量:7
采纳率:0%
帮助的人:1.1万
展开全部
工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷ 工作时间=工作效率
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式