曲线C1:y=x^2与c2:y= --(x--2)^2,直线L与C1,c2都相切,求直线L的方程 详解

HKRichest
2011-06-07 · TA获得超过3728个赞
知道小有建树答主
回答量:1082
采纳率:0%
帮助的人:1431万
展开全部
设直线L与C1相切于(x0,x0^2)
C1:y=x^2=>y'=2x=>L为y=2x0(x-x0)+x0^2=2x0x-x0^2

设直线L与C2相切于(x1,-(x1-2)^2)
C2:y=-(x-2)^2=>y'=-2(x-2)=4-2x=>L为y=(4-2x1)(x-x1)-(x1-2)^2=(4-2x1)x+x1^2-4

则有4-2x1=2x0,-x0^2=x1^2-4
解得x0=2,x1=0或x0=0,x1=2
所以L为y=4x-4或y=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式