笛卡尔几何学很有读的价值吗?
展开全部
笛卡儿最杰出的成就是在数学发展上创立了解析几何学。笛卡尔对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他所建立的解析几何在数学史上具有划时代的意义。
当时,代数还是一门比较新的科学,几何学的思维还在数学家的头脑中占有统治地位。在笛卡尔之前,几何与代数是数学中两个不同的研究领域。笛梁察卡尔站在方法论的自然哲册渣局学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。
1637年,笛卡尔发表了《几何学》,创立了直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形州让式,而且可以通过代数变换来实现发现几何性质,证明几何性质。解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡尔的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡尔用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。正如恩格斯所说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。笛卡尔的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。
当时,代数还是一门比较新的科学,几何学的思维还在数学家的头脑中占有统治地位。在笛卡尔之前,几何与代数是数学中两个不同的研究领域。笛梁察卡尔站在方法论的自然哲册渣局学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。
1637年,笛卡尔发表了《几何学》,创立了直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形州让式,而且可以通过代数变换来实现发现几何性质,证明几何性质。解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡尔的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡尔用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。正如恩格斯所说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。笛卡尔的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。
2011-06-07
展开全部
废话( ⊙ o ⊙ )没读的价值还这么出名O(∩_∩)O~...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-14
展开全部
很有
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询