勾股定理公式?

醉意撩人殇
高粉答主

2019-04-01 · 关注我不会让你失望
知道小有建树答主
回答量:201
采纳率:100%
帮助的人:7.5万
展开全部

勾股定理公式:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

扩展资料:

勾股定理的意义:

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”。

而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

参考资料来源:百度百科——勾股定理

百度网友0e2e5a0
推荐于2017-12-16 · TA获得超过8490个赞
知道小有建树答主
回答量:313
采纳率:0%
帮助的人:230万
展开全部
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:

直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,

设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邵警卫
2011-06-24 · TA获得超过983个赞
知道答主
回答量:2
采纳率:0%
帮助的人:3098
展开全部
如果直角三角形两直角边分别为a,b,斜边为c,那么a² +b² =c² ; 即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
来源:
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友a570814
2011-06-09 · TA获得超过2032个赞
知道小有建树答主
回答量:247
采纳率:0%
帮助的人:67.9万
展开全部
三角形三边分别为a,b,c,a,b是直角边,c是斜边,勾股定理公式是a^2+b^2=c^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sxn7758521
2012-07-13 · TA获得超过1724个赞
知道答主
回答量:288
采纳率:66%
帮助的人:44万
展开全部
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:

直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,

设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(19)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式