如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于点A,交x轴于点B、C,已知A点坐标为(0,3)

2010山东济宁最后一大题,谁解释下最后点P到AC的距离怎么算。... 2010山东济宁最后一大题,谁解释下最后点P到AC的距离怎么算。 展开
暗香沁人
高赞答主

2011-06-10 · 点赞后记得关注哦
知道大有可为答主
回答量:1万
采纳率:83%
帮助的人:7100万
展开全部
解:(1)设抛物线为y=a(x-4)^2-1,
∵抛物线经过点A(0,3),
∴3=a(0-4)^2-1,a=1/4;
∴抛物线为 y=1/4(x-4)^2-1=1/4x^2-2x+3

(2)相交.
证明:连接CE,则CE⊥BD,
当1/4(x-4)^2=0时,x1=2,x2=6.
A(0,3),B(2,0),C(6,0),
对称轴x=4,
∴OB=2,AB=√(2^2+3^2)= √13
BC=4,
∵AB⊥BD,
∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,
∴△AOB∽△BCE,
∴AB/BC=OB/CE ,即√13/4=2/CE ,解得CE= 8√13/13,
∵ 8√13/13>2,
∴抛物线的对称轴l与⊙C相交

(3)如图,过点P作平行于y轴的直线交AC于点Q;
可求出AC的解析式为y=1/2x+3
设P点的坐标为(m,1/4m^2-2m+3)
则Q点的坐标为(m,-1/2m+3)
∴PQ=-1/2m+3-(1/4m^2-2m+3)=-1/4m^2+3/2m.
∵S△PAC=S△PAQ+S△PCQ=1/2×(-1/4m^2+3/2m)×6
=-3/4(m-3)^2+27/4;
∴当m=3时,△PAC的面积最大为27/4;
此时,P点的坐标为(3,-3/4)
翟寒霞L
2011-06-10
知道答主
回答量:22
采纳率:0%
帮助的人:0
展开全部
(解:(1)设抛物线为y=a(x-4)^2-1,
∵抛物线经过点A(0,3),
∴3=a(0-4)^2-1,a=1/4;
∴抛物线为 y=1/4(x-4)^2-1=1/4x^2-2x+3

(2)相交.
证明:连接CE,则CE⊥BD,
当1/4(x-4)^2=0时,x1=2,x2=6.
A(0,3),B(2,0),C(6,0),
对称轴x=4,
∴OB=2,AB=√(2^2+3^2)= √13
BC=4,
∵AB⊥BD,
∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,
∴△AOB∽△BCE,
∴AB/BC=OB/CE ,即√13/4=2/CE ,解得CE= 8√13/13,
∵ 8√13/13>2,
∴抛物线的对称轴l与⊙C相交

(3)如图,过点P作平行于y轴的直线交AC于点Q;
可求出AC的解析式为y=1/2x+3
设P点的坐标为(m,1/4m^2-2m+3)
则Q点的坐标为(m,-1/2m+3)
∴PQ=-1/2m+3-(1/4m^2-2m+3)=-1/4m^2+3/2m.
∵S△PAC=S△PAQ+S△PCQ=1/2×(-1/4m^2+3/2m)×6
=-3/4(m-3)^2+27/4;
∴当m=3时,△PAC的面积最大为27/4;解:(1)设抛物线为y=a(x-4)^2-1,
∵抛物线经过点A(0,3),
∴3=a(0-4)^2-1,a=1/4;
∴抛物线为 y=1/4(x-4)^2-1=1/4x^2-2x+3

(2)相交.
证明:连接CE,则CE⊥BD,
当1/4(x-4)^2=0时,x1=2,x2=6.
A(0,3),B(2,0),C(6,0),
对称轴x=4,
∴OB=2,AB=√(2^2+3^2)= √13
BC=4,
∵AB⊥BD,
∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,
∴△AOB∽△BCE,
∴AB/BC=OB/CE ,即√13/4=2/CE ,解得CE= 8√13/13,
∵ 8√13/13>2,
∴抛物线的对称轴l与⊙C相交

(3)如图,过点P作平行于y轴的直线交AC于点Q;
可求出AC的解析式为y=1/2x+3
设P点的坐标为(m,1/4m^2-2m+3)
则Q点的坐标为(m,-1/2m+3)
∴PQ=-1/2m+3-(1/4m^2-2m+3)=-1/4m^2+3/2m.
∵S△PAC=S△PAQ+S△PCQ=1/2×(-1/4m^2+3/2m)×6
=-3/4(m-3)^2+27/4;
∴当m=3时,△PAC的面积最大为27/4.此时,P点的坐标为(3,-3/4)
此时,P点的坐标为(3,-3/4)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-06-10
展开全部
可设抛物线为 y+1=a(x-4)²
将A带入得a=¼,所以B(2,0)、C(6,0)
过A、C的直线为:y= -½x+3 即x+2y-6=0
又P(4,-7/8)
所以P到直线AC的距离为(4-31/4)/√5=3√5 / 4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
han好好学习
2012-05-21
知道答主
回答量:1
采纳率:0%
帮助的人:1627
展开全部
用相似...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式