已知sinx+cosx=1/5,且0<x<π。求sin^3*x -cos^3*x的值
5个回答
展开全部
(sinx+cosx)^2=1+2sinxcosx=1/25 2sinxcosx=-24/25 π/2<x<π
(sinx-cosx)^2=1-2sinxcosx=1+24/25=49/25 sinx-cosx=7/5
sin^3*x -cos^3*x=(sinx-cosx)(sin^2*x+sinxcosx+cos^2*x)=(7/5)*(1-12/25)=91/125
(sinx-cosx)^2=1-2sinxcosx=1+24/25=49/25 sinx-cosx=7/5
sin^3*x -cos^3*x=(sinx-cosx)(sin^2*x+sinxcosx+cos^2*x)=(7/5)*(1-12/25)=91/125
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinx+cosx=1/5
(sinx+cosx)^2 =1/25
sin^2*x + 2 sinx cosx + cos^2*x =1/25
1 + 2 sinx cosx =1/25
sinx cosx = -12/25
sin^3*x -cos^3*x
= (sinx - cosx) (sin^2*x + sinx*cosx + cos^2*x)
= (sinx - cosx) (1 + sinx*cosx )
= (sinx - cosx) (13/25)
= (13/25)√(sinx - cosx)^2
= (13/25)√{sin^2(x) - 2 sinx cosx + cos^2(x) }
= (13/25)√(1 - 2 sinx cosx )
= (13/25)√(49/25)
= 91/125
(sinx+cosx)^2 =1/25
sin^2*x + 2 sinx cosx + cos^2*x =1/25
1 + 2 sinx cosx =1/25
sinx cosx = -12/25
sin^3*x -cos^3*x
= (sinx - cosx) (sin^2*x + sinx*cosx + cos^2*x)
= (sinx - cosx) (1 + sinx*cosx )
= (sinx - cosx) (13/25)
= (13/25)√(sinx - cosx)^2
= (13/25)√{sin^2(x) - 2 sinx cosx + cos^2(x) }
= (13/25)√(1 - 2 sinx cosx )
= (13/25)√(49/25)
= 91/125
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin3x+cos3x=1/5
sin^3(x)+cos^3(x)=91/125
sin^3(x)+cos^3(x)=91/125
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询