函数f(x)=1/3ax^3+1/2ax^2-2ax+2a+1的图像经过四个象限,则实数a的取值范围是
展开全部
首先a≠0,否则f(x)=1,其图像只经过一二象限.
f´(x)=ax²+ax-2a=a(x²+x-2)=a(x+2)(x-1),f"(x)=2ax+a=a(2x+1),
分别令f´(x)=0,f"(x)=0得两个驻点x1=-2,x2=1,一个拐点x0=-1/2,
f"(x1)=-3a,f"(x2)=3a,f(x0)=37a/12+1,f(x1)=16a/3+1,f(x2)=5a/6+1.
若a>0,
f"(x1)<0,f"(x2)>0,
f(x1)为极大值,f(x2)为极小值,
显然,此时f(x1)=16a/3+1>0,
所以,只要f(x2)=5a/6+1<0,即a<-6/5,就能保证图像过第四象限,
但这与a>0矛盾,所以无解.
若a<0,
f"(x1)>0,f"(x2)<0,
f(x1)为极小值,f(x2)为极大值,
只要f(x1)=16a/3+1<0,即a<-3/16,
且f(x2)=5a/6+1>0,即a>-6/5,就能保证图像过第四象限,
所以-6/5<a<-3/16.
综上所述,a∈(-6/5,-3/16).
f´(x)=ax²+ax-2a=a(x²+x-2)=a(x+2)(x-1),f"(x)=2ax+a=a(2x+1),
分别令f´(x)=0,f"(x)=0得两个驻点x1=-2,x2=1,一个拐点x0=-1/2,
f"(x1)=-3a,f"(x2)=3a,f(x0)=37a/12+1,f(x1)=16a/3+1,f(x2)=5a/6+1.
若a>0,
f"(x1)<0,f"(x2)>0,
f(x1)为极大值,f(x2)为极小值,
显然,此时f(x1)=16a/3+1>0,
所以,只要f(x2)=5a/6+1<0,即a<-6/5,就能保证图像过第四象限,
但这与a>0矛盾,所以无解.
若a<0,
f"(x1)>0,f"(x2)<0,
f(x1)为极小值,f(x2)为极大值,
只要f(x1)=16a/3+1<0,即a<-3/16,
且f(x2)=5a/6+1>0,即a>-6/5,就能保证图像过第四象限,
所以-6/5<a<-3/16.
综上所述,a∈(-6/5,-3/16).
追问
。。。。。。。智商太低。。。。。看不懂
追答
先对函数求导,有f'(x)=ax^2+ax-2a=a(x+2)(x-1),
则在x=1,-2时,函数取到极值,
若a>0,则图像必过一三象限,x=-2时为极大值,x=1为极小值,
要满足题意,则f(-2)>0且f(1)0,得-6/5<a<-3/16,
又满足前提a<0,
所以综合最后结果为-6/5<a<-3/16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询