已知二次函数f(x)=ax2+bx(a、b为常数且a≠0)满足条件f(2)=0,且方程f(x)=x有等根,问
是否存在实数m,n(m≠n)使定义域和值域分别为[m,n]和[2m,2n]?如存在,求出m,n的值.如不存在.说明理由...
是否存在实数m,n(m≠n)使定义域和值域分别为[m,n]和[2m,2n]?如存在,求出m,n的值.如不存在.说明理由
展开
3个回答
展开全部
存在。
解:由题可解得a=-0.5 b=1,即f(x)=ax2+bx=-.05x2+x=-0.5(x-1)2+0.5,可得f(x)≤0.5,且是关于x=1对称的函数,在x≤1时,是递增函数,在x≥1时是递减函数。
若要存在值域[2m,2n],就得使2m<2n≤0.5,得m<n≤0.25,所以若要存在实数m,n(m≠n)使定义域和值域分别为[m,n]和[2m,2n],那根据函数可使f(m)=-0.5m2+m=2m,f(n)=-0.5n2+n=2n。解得m=-2,n=0。
解:由题可解得a=-0.5 b=1,即f(x)=ax2+bx=-.05x2+x=-0.5(x-1)2+0.5,可得f(x)≤0.5,且是关于x=1对称的函数,在x≤1时,是递增函数,在x≥1时是递减函数。
若要存在值域[2m,2n],就得使2m<2n≤0.5,得m<n≤0.25,所以若要存在实数m,n(m≠n)使定义域和值域分别为[m,n]和[2m,2n],那根据函数可使f(m)=-0.5m2+m=2m,f(n)=-0.5n2+n=2n。解得m=-2,n=0。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询