2条2重积分的题求高手解答,写一下思路,答案我有。
1.若∫∫(x^2+y^2)^1/2dxdy=4/9,其中a>0,则a=___2.设D:x^2+y^2<=R^2,R>0且∫∫D(R^2-X^2-Y^2)^1/2dxdy...
1.若∫∫(x^2+y^2)^1/2dxdy=4/9,其中a>0,则a=___
2.设D:x^2+y^2<=R^2,R>0且∫∫D(R^2-X^2-Y^2)^1/2dxdy=2/3π,则R= 展开
2.设D:x^2+y^2<=R^2,R>0且∫∫D(R^2-X^2-Y^2)^1/2dxdy=2/3π,则R= 展开
2个回答
展开全部
1. a是什么?
2. 化成极坐标x=rcosθ, y=rsinθ, D: 0<r≤R, 0≤θ≤2π
∫∫D √(R²-x²-y²)dxdy=∫∫D r√(R²-r²)drdθ
=∫(0,2π)dθ∫(0,R)r√(R²-r²)dr
令r=Rsint, 则√(R²-r²)=Rcost, dr=Rcost dt
∫(0,R)r√(R²-r²)dr
=∫(0,π/2)R³sintcos²tdt
=-∫(0,π/2)R³cos²td(cost)
=-R³cos³t/3|(0,π/2)
=R³/3
∴∫∫D √(R²-x²-y²)dxdy
=∫(0,2π)dθ∫(0,R)r√(R²-r²)dr
=2π*R³/3
=2π/3
故R³=1
R=1
2. 化成极坐标x=rcosθ, y=rsinθ, D: 0<r≤R, 0≤θ≤2π
∫∫D √(R²-x²-y²)dxdy=∫∫D r√(R²-r²)drdθ
=∫(0,2π)dθ∫(0,R)r√(R²-r²)dr
令r=Rsint, 则√(R²-r²)=Rcost, dr=Rcost dt
∫(0,R)r√(R²-r²)dr
=∫(0,π/2)R³sintcos²tdt
=-∫(0,π/2)R³cos²td(cost)
=-R³cos³t/3|(0,π/2)
=R³/3
∴∫∫D √(R²-x²-y²)dxdy
=∫(0,2π)dθ∫(0,R)r√(R²-r²)dr
=2π*R³/3
=2π/3
故R³=1
R=1
追问
1.若∫∫(x^2+y^20,则a=___
追答
x²+y²≤ax => x²+y²-ax≤0 =>(x-a/2)²+y²≤(a/2)²
积分域为以(a/2,0)为圆心, a/2为半径的圆
化成极坐标x=rcosθ, y=rsinθ, D: 0≤r≤acosθ, -π/2≤θ≤π/2
∫∫(x²+y²≤ax) √(x²+y²)dxdy=∫∫D r² drdθ
=∫(-π/2,π/2)dθ∫(0,acosθ)r²dr
=∫(-π/2,π/2) (a³cos³θ)/3 dθ
=(a³/3)∫(-π/2,π/2) cos²θ d(sinθ)
=(a³/3) (sinθ-sin³θ/3) | (-π/2,π/2)
=(a³/3) (4/3)
=4a³/9=4/9
∴a³=1
a=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询