方程x^2+mx+2xi=-1-mi有实数根,求实数m的值
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
展开全部
方程x^2+mx+2xi=-1-mi有实数根
x^2+mx+2xi+1+mi=0
x^2+mx+1+(2x+m)i=0
x=-m/2
m^2/4-m^2/2+1=0
m=±2
x^2+mx+2xi+1+mi=0
x^2+mx+1+(2x+m)i=0
x=-m/2
m^2/4-m^2/2+1=0
m=±2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2+mx+2xi=-1-mi
x^2+mx+1=0
2x=-m
m^2=4
m=2 或者-2
x^2+mx+1=0
2x=-m
m^2=4
m=2 或者-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
化简有x^2+mx+1+(2x+m)i=0 虚部为0则有 x=-m/2
代入得 m^2/4-m^2/2+1=0 m=±2
代入得 m^2/4-m^2/2+1=0 m=±2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询