在回归分析中,F检验和t检验各有什么作用?

 我来答
海边的鸟儿啊
高粉答主

2019-07-29 · 希望能自由的飞翔
海边的鸟儿啊
采纳数:1108 获赞数:581594

向TA提问 私信TA
展开全部

F检验用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。t检验推论差异发生的概率,从而比较两个平均数的差异是否显著。

F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验,
Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。

F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。

若两个母体有相同的方差(方差齐性),那么可以采用F检验,但是该检验会呈现极端的非稳健性和非常态性,可以用t检验、巴特勒特检验等取代。

扩展资料

回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

正确应用回归分析预测时应注意:

①用定性分析判断现象之间的依存关系;

②避免回归预测的任意外推;

③应用合适的数据资料。

参考资料来源:百度百科-回归分析

富港检测技术(东莞)有限公司_
2024-03-25 广告
ASTM D4169-16标准是运用实际物流案例中具有代表性的和经过实践证明的一种试验方法,ASTM D4169-16有18个物流分配周期、10个危险因素和3个等级测试强度。10个危险因素分别为:A人工和机械操作(跌落、冲击和稳定性)、B仓... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
帐号已注销
2021-05-24 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:161万
展开全部

F检验用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。

t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。

在一般情形下,t检验与f检验的结果没有必然联系;但当解释变量之间两两不相关时,若所有解释变量的系数均通过t检验,那么回归方程也能通过f检验。

正确理解P值与差别有无统计学意义

P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。

假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。

以上内容参考:百度百科-t检验

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
99v
高粉答主

推荐于2017-09-29 · 关注我不会让你失望
知道顶级答主
回答量:3.5万
采纳率:97%
帮助的人:1.6亿
展开全部
一元线性回归里t检验和f检验等价,但在多元线性回归里,t检验可以检验各个回归系数显著性,f检验用来检验总体回归关系的显著性。
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。
在一般情形下,t检验与F检验的结果没有必然联系;但当解释变量之间两两不相关时,若所有解释变量的系数均通过t检验,那么回归方程也能通过F检验。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式