如图所示, 四棱锥P-ABCD的底面ABCD是边长为1的菱形,角BCD=60度,E是CD的中点,PA垂直底面ABCD,PA=根号3
1个回答
展开全部
连接BD。
∵ABCD是边长为1的菱形 ∴AB=BC=CD=1
在△BCD中,BC=CD=1,∠BCD=60°,∴△BCD是等边三角形。∵E是CD的中点 ∴BE是∠CBD的角平分线,即∠CBE=30°。
∵ABCD是菱形,∠BCD=60° ∴∠CBA=120°
∴∠ABE=90°,即AB⊥BE
∵PA⊥平面ABCD ,BE在平面ABCD上 ∴PA⊥BE
∵BE⊥PA,BE⊥AB ∴BE⊥平面PAB ∴BE⊥PB
由AB⊥BE,PB⊥BE,故∠PBA是二面角A-BE-P的平面角
∵PA⊥平面ABCD ∴PA⊥AB,即∠PAB=90°
在Rt△PAB中,PA=√3,AB=1 ∴tg∠PBA=√3 ∴∠PBA=60°
所以,二面角A-BE-P为60°。
∵ABCD是边长为1的菱形 ∴AB=BC=CD=1
在△BCD中,BC=CD=1,∠BCD=60°,∴△BCD是等边三角形。∵E是CD的中点 ∴BE是∠CBD的角平分线,即∠CBE=30°。
∵ABCD是菱形,∠BCD=60° ∴∠CBA=120°
∴∠ABE=90°,即AB⊥BE
∵PA⊥平面ABCD ,BE在平面ABCD上 ∴PA⊥BE
∵BE⊥PA,BE⊥AB ∴BE⊥平面PAB ∴BE⊥PB
由AB⊥BE,PB⊥BE,故∠PBA是二面角A-BE-P的平面角
∵PA⊥平面ABCD ∴PA⊥AB,即∠PAB=90°
在Rt△PAB中,PA=√3,AB=1 ∴tg∠PBA=√3 ∴∠PBA=60°
所以,二面角A-BE-P为60°。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询