2个回答
展开全部
∑(n^2)/(2^n)
=∑(n^2) * (1/2)^n
把1/2看成x
则得到幂级数
∑(n^2) * x^n 显然收敛域为x∈[-1,1)
= x *∑(n^2) * x^(n-1)
又因为 ∑ n *x^n =x *∑ n *x^(n-1)= x * (∑ (1-->+∞) x^n)′=x^2/(1-x)
所以∑(n^2) * x^(n-1)=(∑ n *x^n )′= [x^2/(1-x)]′=(2x-x^2)/(1-x)^2
所以∑(n^2) * x^n= x * (2x-x^2)/(1-x)^2=(2x^2-x^3)/(1-x)^2
把x=1/2带入得到:
∑(n^2)/(2^n)=3/2
=∑(n^2) * (1/2)^n
把1/2看成x
则得到幂级数
∑(n^2) * x^n 显然收敛域为x∈[-1,1)
= x *∑(n^2) * x^(n-1)
又因为 ∑ n *x^n =x *∑ n *x^(n-1)= x * (∑ (1-->+∞) x^n)′=x^2/(1-x)
所以∑(n^2) * x^(n-1)=(∑ n *x^n )′= [x^2/(1-x)]′=(2x-x^2)/(1-x)^2
所以∑(n^2) * x^n= x * (2x-x^2)/(1-x)^2=(2x^2-x^3)/(1-x)^2
把x=1/2带入得到:
∑(n^2)/(2^n)=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询