已知三阶实对称矩阵A的特征值为1,1,-2,且(0,1,1)T,是对应于-2的特征向量,求A。

请写出过程去,谢谢!... 请写出过程去,谢谢! 展开
大恒向前
2011-06-20 · TA获得超过367个赞
知道小有建树答主
回答量:85
采纳率:0%
帮助的人:0
展开全部
这个,我的解法比较粗暴,凑合着看吧;
由于-2的特征向量为X1(0,1,1)T;且实对称矩阵对角化的特征向量组为正交组;
故有设1所对应的特征向量为X(a1,a2,a3)
有XX1=0;a2+a3=0;解得X的两组基向量为(1,0,0),(0,1,-1);
由许米特正交法(具体方法可以百度一下)将两组向量正交化
得到(1,0,0),(0,√2/2,-√2/2)两组向量,
将X1(0,1,1)正交化得到(0,√2/2,√2/2);
故得到矩阵C
1 0 0
0 √2/2 √2/2
0 -√2/2 √2/2

|1 0 0 |
AC=C | 0 1 0 |
|0 0 -2|
解得
A=
1 0 0
0 -1/2 -3/2
0 -3/2 -1/2
lry31383
高粉答主

2011-06-20 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
解: 设属于特征值1的特征向量为(x1,x2,x3)^T
由于实对称矩阵属于不同特征值的特征向量正交
故(x1,x2,x3)^T与a1=(0,1,1)^T正交.
即有 x2+x3=0.
得基础解系: a2=(1,0,0)^T,a3=(0,1,-1)^T

令P=(a2,a3,a1) =
1 0 0
0 1 1
0 -1 1
则 P^-1AP = diag(1,1,-2).
所以 A = Pdiag(1,1,-2)P^-1=
1 0 0
0 -1/2 -3/2
0 -3/2 -1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式