已知三阶实对称矩阵A的特征值1.1.-2,且(1.1.-1)T是对应于-2的特征向量,求A.
5个回答
展开全部
利用实对称矩阵的属于不同特征值的特征向量正交
知属于特征值1的特征向量满足 x1+x2-2x3=0
解得属于特征值1的特征向量 (1,-1,0)^T,(2,0,1)^T
3个特征向量构成矩阵P
有 A=Pdiag(1,1,-2)P^-1
知属于特征值1的特征向量满足 x1+x2-2x3=0
解得属于特征值1的特征向量 (1,-1,0)^T,(2,0,1)^T
3个特征向量构成矩阵P
有 A=Pdiag(1,1,-2)P^-1
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
很简单!x1+x2-x3=0(1,-1,0)T,(1,0,1)T,3个向量一组合,即可。
小意思,不谢。
小意思,不谢。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
主要得利用实对称矩阵的特征向量相互正交这一特性来求解。
设一个特征向量为X = (x1,x2,x3)T
则,
XT (1,1,-1) = 0;
解求出来XT,就可以了。
然后,构造一个可逆矩阵P = (a1,a2,a3),则
A = Pdiag(1,1,-2)P-1
就可以求解出来A
设一个特征向量为X = (x1,x2,x3)T
则,
XT (1,1,-1) = 0;
解求出来XT,就可以了。
然后,构造一个可逆矩阵P = (a1,a2,a3),则
A = Pdiag(1,1,-2)P-1
就可以求解出来A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询