如图6,△ABC和△ADC都是等边三角形,点E,F同时分别从点B,A出发,各自沿

bb2525qx
2011-06-21 · TA获得超过3842个赞
知道答主
回答量:211
采纳率:0%
帮助的人:129万
展开全部
如图,△ABC和△ADC都是每边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A,D
(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由
(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由
(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由
(4)若点E,F在射线BA,射线AD上继续运动下去,(1)小题中的结论还成立吗?(写结论,不必说明理由)

1、不随之变化。(用特殊点法)
由题意得,△ABC和△ADC都是每边长相等的等边三角形
所以当点E与点B重合时,∠ECF=60度

当点E为线段AB的中点,点F为线段AD的中点,
此时∠ECF=∠ECA+∠ACF=60度。

当点E与点A重合,点F与点D重合,
此时∠ECF=60度
所以在点E、F运动过程中∠ECF的大小不随之改变。

2、不变化。(特殊点法)

由题意得,△ABC和△ADC都是每边长相等的等边三角形
所以当点E与点B重合时,点F与点A重合,
此时,以点A、E、C、F为顶点的四边形的面积即为三角形BCA的面积

当点E和点F分别为线段AB和线段AD的中点时,
因为边BC与边AC等长,角EBC=角FAC,EB=FA
所以三角形EBC与三角形FAC全等。
所以以点A、E、C、F为顶点的四边形的面积即为三角形BCA的面积

同理当点E与点A重合时,点F与点D重合
此时以点A、E、C、F为顶点的四边形的面积即为三角形ADC
又三角形BCA与三角形ADC都是等边三角形,且AC为公共边,
所以三角形ADC与三角形BCA全等
所以点A、E、C、F为顶点的四边形的面积即为三角形BCA的面积
所以在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积不变

3、我只知道跟角FCD相等。

4、还是不变的。

希望能帮到你!
清新还鲜亮灬彩霞3811
2011-06-25 · TA获得超过6万个赞
知道大有可为答主
回答量:2.7万
采纳率:0%
帮助的人:3552万
展开全部
解:(1)∵E、F的速度相同,且同时运动,
∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,

∴△BCE≌△ACF(SAS),得∠BCE=∠ACF,
因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
所以∠ECF=∠BCA=60°.(2分)

(2)答:没有变化.
证明:由(1)知:△BCE、△ACF的面积相等;
故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
因此四边形AECF的面积没有变化.

(3)答:∠AFE=∠FCD=∠ACE;
证明:同(1)可证得:△ACE≌△DCF,得∠ACE=∠FCD;
由(1)知:EC=FC,∠ECF=60°,
∴△ECF是等边三角形,即∠EFC=60°;
∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,
∴∠AFE=∠FCD=∠ACE.

(4)回答(1)中结论成立.(连接 E、F)
由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,故(1)的结论也成立.

应该可以帮到你。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
776399501
2011-06-21
知道答主
回答量:6
采纳率:0%
帮助的人:6.5万
展开全部
解:(1)∵E、F的速度相同,且同时运动,
∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,

∴△BCE≌△ACF(SAS),得∠BCE=∠ACF,
因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
所以∠ECF=∠BCA=60°.(2分)

(2)答:没有变化.
证明:由(1)知:△BCE、△ACF的面积相等;
故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
因此四边形AECF的面积没有变化.

(3)答:∠AFE=∠FCD=∠ACE;
证明:同(1)可证得:△ACE≌△DCF,得∠ACE=∠FCD;
由(1)知:EC=FC,∠ECF=60°,
∴△ECF是等边三角形,即∠EFC=60°;
∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,
∴∠AFE=∠FCD=∠ACE.

(4)回答(1)中结论成立.(连接 E、F)
由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,故(1)的结论也成立.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友71f9616
2011-06-22 · TA获得超过153个赞
知道答主
回答量:28
采纳率:0%
帮助的人:23.1万
展开全部
解:(1)∵E、F的速度相同,且同时运动,
∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,

∴△BCE≌△ACF(SAS),得∠BCE=∠ACF,
因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
所以∠ECF=∠BCA=60°.(2分)

(2)答:没有变化.
证明:由(1)知:△BCE、△ACF的面积相等;
故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
因此四边形AECF的面积没有变化.

(3)答:∠AFE=∠FCD=∠ACE;
证明:同(1)可证得:△ACE≌△DCF,得∠ACE=∠FCD;
由(1)知:EC=FC,∠ECF=60°,
∴△ECF是等边三角形,即∠EFC=60°;
∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,
∴∠AFE=∠FCD=∠ACE.

(4)回答(1)中结论成立.
由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,故(1)的结论也成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yp61870508
2011-06-25
知道答主
回答量:10
采纳率:0%
帮助的人:3.7万
展开全部
∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,

∴△BCE≌△ACF(SAS),得∠BCE=∠ACF,
因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
所以∠ECF=∠BCA=60°.(2分)

(2)答:没有变化.
证明:由(1)知:△BCE、△ACF的面积相等;
故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
因此四边形AECF的面积没有变化.

(3)答:∠AFE=∠FCD=∠ACE;
证明:同(1)可证得:△ACE≌△DCF,得∠ACE=∠FCD;
由(1)知:EC=FC,∠ECF=60°,
∴△ECF是等边三角形,即∠EFC=60°;
∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,
∴∠AFE=∠FCD=∠ACE.

(4)回答(1)中结论成立.
由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,(1)的结论也成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式