求解:对1/2*sin(x)*x^(-1/2)的不定积分???
2个回答
展开全部
(1/2)∫sinxdx/x^(1/2)
=∫sinxdx^(1/2)
=sinx*x^(1/2)-∫cosx*x^(1/2)dx
cosx=1-x^2/2!+x^4/4!-x^6/6!+x^8/8!+..+(-1)^n x^2n/2n!
=sinx*x^(1/2)-[∫x^(-1/2)-x^(3/2)/2!+x^(7/2)/4!-x^(11/2)/6!+..+(-1)^nx^(2n-1/2)/2n!]
=sinx*x^(1/2)-2x^(1/2)+(2/5)x^(5/2)/2!-(2/9)x^(9/2)/4!+(2/13)x^(13/2)/6!-..-(-1)^n(2/(4n+1))x^(2n+1/2)/2n!
=∫sinxdx^(1/2)
=sinx*x^(1/2)-∫cosx*x^(1/2)dx
cosx=1-x^2/2!+x^4/4!-x^6/6!+x^8/8!+..+(-1)^n x^2n/2n!
=sinx*x^(1/2)-[∫x^(-1/2)-x^(3/2)/2!+x^(7/2)/4!-x^(11/2)/6!+..+(-1)^nx^(2n-1/2)/2n!]
=sinx*x^(1/2)-2x^(1/2)+(2/5)x^(5/2)/2!-(2/9)x^(9/2)/4!+(2/13)x^(13/2)/6!-..-(-1)^n(2/(4n+1))x^(2n+1/2)/2n!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询