线性代数:A为n阶实对称矩阵 (A-E)(A-2E)(A-3E)=O 证明:A为正定矩阵。 (请详细一些,谢谢了。)
3个回答
展开全部
实对称矩阵A为正定矩阵的充分必要条件是A的所以特征值全是正的。
(A-E)(A-2E)(A-3E)=O所以A的特征值满足方程(λ-1)(λ-2)(λ-3)=0,解得λ=1,2,3.
即A的所以特征值全是正的,又A为实对称矩阵故A正定。
(A-E)(A-2E)(A-3E)=O所以A的特征值满足方程(λ-1)(λ-2)(λ-3)=0,解得λ=1,2,3.
即A的所以特征值全是正的,又A为实对称矩阵故A正定。
更多追问追答
追问
你的解法正确,但是要是有λ=-4什么的怎么办?
只能保证A的特征值有1或2或3吧!
追答
是的,不可能有λ=-4,可能的情况是1或2或3可能是多重根。比如A是4阶的,那么1,2,3里面必然有一个是二重的。
展开全部
根据凯莱定理,|A-λE|=f(λ),对应把λ换成A有f(A)=0,同时如果假设极小化多项式为g(λ),则g(λ)|f(λ),且g(A)=0.又已知(A-E)(A-2E)(A-3E)=O,由极小化多项式的定义知道必须有g(A)|(A-E)(A-2E)(A-3E),或者说g(λ)|(λ-1)(λ-2)(λ-3).而因为已知条件告诉我们A为n阶的实对称矩阵,所以所有的特征值都是实数,因此只能为1,或者2,或者3,至于重数是多少我们不在乎,反正就是所有的特征值都是大于0的,因此它正定。
注:极小化多项式还有一个表示就是,g(λ)=(λ-λ1)(λ-λ2)……(λ-λn)其中λi为互不相同的所有特征值。由这里你也可以看出所有互不相同的取值只能在1,2,3中选,所以一定为大于0的,因此正定。
注:极小化多项式还有一个表示就是,g(λ)=(λ-λ1)(λ-λ2)……(λ-λn)其中λi为互不相同的所有特征值。由这里你也可以看出所有互不相同的取值只能在1,2,3中选,所以一定为大于0的,因此正定。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由(A-E)(A-2E)(A-3E)=0得A^3-6A^2+11A-6E=0,A(A^2-6A+11E)=6E,所以A可逆,所以0不是特征值;
假设存在λ<0,使Aα=λα,设f(λ)=λ^3-6λ^2+11λ-6,f'(λ)=3λ^2-12λ+11=3(λ-2)^2-1,当λ<0时,f'(λ)>0,即当λ<0时f(λ)当增,因为f(0)=-6<0,所以当λ<0时f(λ)<0,即不存在λ<0,使f(λ)=λ^3-6λ^2+11λ-6=0,所以A的特征值不为负;
综上,A为正定矩阵。
假设存在λ<0,使Aα=λα,设f(λ)=λ^3-6λ^2+11λ-6,f'(λ)=3λ^2-12λ+11=3(λ-2)^2-1,当λ<0时,f'(λ)>0,即当λ<0时f(λ)当增,因为f(0)=-6<0,所以当λ<0时f(λ)<0,即不存在λ<0,使f(λ)=λ^3-6λ^2+11λ-6=0,所以A的特征值不为负;
综上,A为正定矩阵。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询