求过圆上一点的一般式的切线方程及证明方法
3个回答
展开全部
解:设圆的方程(x-a)^2+(y-b)^2=r^2,P(X0,y0)为圆上一点,则圆的切线方程为:
(X0-a)(X-a)+(y0-b)(y-b)=r^2
证明:∵P(X0,y0)为圆上一点
∴(X0-a)^2+(y0-b)^2=r^2
要证明:圆的切线方程为:(X0-a)(X-a)+(y0-b)(y-b)=r^2
只证明:(X0-a)(X-a)+(y0-b)(y-b)=(X0-a)^2+(y0-b)^2
整理得:y-y0=-[(X0-a)/(y0-b)](X-X0) ,这正是过圆上点P(X0,y0)的切线方程。
∴圆的切线方程为:(X0-a)(X-a)+(y0-b)(y-b)=r^2
(X0-a)(X-a)+(y0-b)(y-b)=r^2
证明:∵P(X0,y0)为圆上一点
∴(X0-a)^2+(y0-b)^2=r^2
要证明:圆的切线方程为:(X0-a)(X-a)+(y0-b)(y-b)=r^2
只证明:(X0-a)(X-a)+(y0-b)(y-b)=(X0-a)^2+(y0-b)^2
整理得:y-y0=-[(X0-a)/(y0-b)](X-X0) ,这正是过圆上点P(X0,y0)的切线方程。
∴圆的切线方程为:(X0-a)(X-a)+(y0-b)(y-b)=r^2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
设圆的方程(x-a)^2+(y-b)^2=r^2
圆上一点(x0,y0)的一条直线y-y0=k(x-x0)与圆相切
则圆心(a,b)到直线的距离=r
即|b-y0-k(a-x0)|/√(1+k^2)=r
计算出k
圆上一点(x0,y0)的一条直线y-y0=k(x-x0)与圆相切
则圆心(a,b)到直线的距离=r
即|b-y0-k(a-x0)|/√(1+k^2)=r
计算出k
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
冰雨情答得很好。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询