在线等!在三角形ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1-sinC/2,求sinC的值
3个回答
展开全部
(1)
sinC+cosC=1-sinC/2,移项得 sinC-sinC/2 = 1-cosC
由二倍角公式得 2sinC/2 cosC/2-sinC/2 = 2(sinC/2)^2
因为sinC/2≠0,所以两边消去sinC/2得 2cosC/2-1 = 2sinC/2
整理得 sinC/2-cosC/2=1/2
根据辅助角公式得sin(C/2-π/4)=√2 /4
再由二倍角公式得cos(C-π/2)=1-2sin(C/2-π/4)^2=3/4
∴sinC=cos(C-π/2)=3/4
(2)
移项、配方得 (a-2)^2+(b-2)^2=0 故a=b=2
由余弦定理 c^2=a^2+b^2-2ab*cosC=4+4-8cosC
又由(1)中 sinC/2-cosC/2=1/2 可知 sinC/2 > cosC/2 >0
所以 cosC=(cosC/2)^2-(sinC/2)^2 < 0,从而 cosC= -√7/4
所以 c^2=8-8cosC=8+2√7=(1+√7)^2
c= 1+√7
sinC+cosC=1-sinC/2,移项得 sinC-sinC/2 = 1-cosC
由二倍角公式得 2sinC/2 cosC/2-sinC/2 = 2(sinC/2)^2
因为sinC/2≠0,所以两边消去sinC/2得 2cosC/2-1 = 2sinC/2
整理得 sinC/2-cosC/2=1/2
根据辅助角公式得sin(C/2-π/4)=√2 /4
再由二倍角公式得cos(C-π/2)=1-2sin(C/2-π/4)^2=3/4
∴sinC=cos(C-π/2)=3/4
(2)
移项、配方得 (a-2)^2+(b-2)^2=0 故a=b=2
由余弦定理 c^2=a^2+b^2-2ab*cosC=4+4-8cosC
又由(1)中 sinC/2-cosC/2=1/2 可知 sinC/2 > cosC/2 >0
所以 cosC=(cosC/2)^2-(sinC/2)^2 < 0,从而 cosC= -√7/4
所以 c^2=8-8cosC=8+2√7=(1+√7)^2
c= 1+√7
展开全部
先回答第一个 问题, 用倍角公式 将原式化为 2sinc/2cosc/2+1-2sin^2c/2=1-sinc/2
因为 sinc/2非零 两边消去 并化简得到 sinc/2-cosc/2=1/2 两边平方得1-sinc=1/4 (用了倍角公式) 得到sinc=3/4
第二个问题 将式子移项变形得到 (a-2)^2+(b-2)^2=0 故a=b=2 再由余弦定理 和第一问中的cosc=+-根号7/4 带入求出c边
因为 sinc/2非零 两边消去 并化简得到 sinc/2-cosc/2=1/2 两边平方得1-sinc=1/4 (用了倍角公式) 得到sinc=3/4
第二个问题 将式子移项变形得到 (a-2)^2+(b-2)^2=0 故a=b=2 再由余弦定理 和第一问中的cosc=+-根号7/4 带入求出c边
参考资料: 无 自己算的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2) ∵a^2+b^=4(a+b)-8
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询