已知在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3,AD=2,
展开全部
求过点E,D,C的抛物线方程解析式;
将∠EDC绕点D按照顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另外一点M,点M的横坐标为6/5,那么,EF=2GO是否成立?若成立。请给予证明;若不成立,请说明理由。
对于(2)中的G点,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出Q点的坐标;若不存在,请说明理由。
解:(1)C关于直线OB对称,AB=BC
∵ OB⊥AB,OB=√3,OA=2 ∴ AB=1=OA/2
∴ ∠AOB=30°,∠OAB=60°,又AC=2=OA
∴ △OAC是等边三角形
∵ OD=2OA=4,A是OD的中点,AD=2
作PE⊥OA于E,则OE=OP/2=(2-X)/2
PE=OP*√3/2,DE=4-OE=4-1+X/2=3+X/2
∵ Rt△DPE∽Rt△DAM,则
AM:PE=AD:PD,AM=PE*AD/PD
Y=0.5*AM*PD=0.5*PE*AD=(2-X)√3/2=√3-X√3/2
若二次函数Y=-2X^2-(7K-3√3)X+√3K的图像关于Y轴对称,即:K=3√3/7
当X=1/2时,PC=1/2,OP=3/2,OE=3/4,PE=3√3/4,DE=4-OE=4-3/4=13/4,PD^2=PE^2+DE^2
PD^2=(169+27)/16=196/16,PD=7/2,AM=PE*AD/PD,K=7AM/2PD=7PE*AD/2PD^2=7PE/PD^2
=(7*3√3/4)*(16/196)=3√3/7,将7K=3√3代入二次函数得:Y=-2X^2+9/7,
即,Y-9/7=-2X^2,该二次函数关于X=0对称,显然也关于Y轴对称。
将∠EDC绕点D按照顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另外一点M,点M的横坐标为6/5,那么,EF=2GO是否成立?若成立。请给予证明;若不成立,请说明理由。
对于(2)中的G点,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出Q点的坐标;若不存在,请说明理由。
解:(1)C关于直线OB对称,AB=BC
∵ OB⊥AB,OB=√3,OA=2 ∴ AB=1=OA/2
∴ ∠AOB=30°,∠OAB=60°,又AC=2=OA
∴ △OAC是等边三角形
∵ OD=2OA=4,A是OD的中点,AD=2
作PE⊥OA于E,则OE=OP/2=(2-X)/2
PE=OP*√3/2,DE=4-OE=4-1+X/2=3+X/2
∵ Rt△DPE∽Rt△DAM,则
AM:PE=AD:PD,AM=PE*AD/PD
Y=0.5*AM*PD=0.5*PE*AD=(2-X)√3/2=√3-X√3/2
若二次函数Y=-2X^2-(7K-3√3)X+√3K的图像关于Y轴对称,即:K=3√3/7
当X=1/2时,PC=1/2,OP=3/2,OE=3/4,PE=3√3/4,DE=4-OE=4-3/4=13/4,PD^2=PE^2+DE^2
PD^2=(169+27)/16=196/16,PD=7/2,AM=PE*AD/PD,K=7AM/2PD=7PE*AD/2PD^2=7PE/PD^2
=(7*3√3/4)*(16/196)=3√3/7,将7K=3√3代入二次函数得:Y=-2X^2+9/7,
即,Y-9/7=-2X^2,该二次函数关于X=0对称,显然也关于Y轴对称。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询