设二元函数z=x^y,则全微分dz=?

RT,求详细步骤... RT,求详细步骤 展开
简单生活Eyv
2021-08-13 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:25.5万
展开全部

则全微分dz=[y*x^(y-1)]dx+[(lnx)*x^y]dy。

解答过程如下:

z=f(x,y)=x^y

则函数z=f(x, y) 在(x, y)处的全微分为:

dz=f'x(x, y)dx + f'y(x, y)dy

=[y*x^(y-1)]dx+[(lnx)*x^y]dy

定理1

如果函数z=f(x,y)在点p0(x0,y0)处可微,则z=f(x,y)在p0(x0,y0)处连续,且各个偏导数存在,并且有f′x(x0,y0)=A,f′y(x0,y0)=B。

定理2

若函数z=f(x,y)在点p0(x0,y0)处的偏导数f′x,f′y连续,则函数f在点p0处可微。

定理3

若函数z = f (x, y)在点(x, y)可微分,则该函数在点(x,y)的偏导数必存在,且函数z = f (x, y)在点(x,y)的全微分。

牛牛爱教育
高粉答主

2020-07-06 · 我是教育小达人,乐于助人; 专注于分享科
牛牛爱教育
采纳数:900 获赞数:105796

向TA提问 私信TA
展开全部

则全微分dz=[y*x^(y-1)]dx+[(lnx)*x^y]dy。

解答过程如下:

z=f(x,y)=x^y

则函数z=f(x, y) 在(x, y)处的全微分为:

dz=f'x(x, y)dx + f'y(x, y)dy

=[y*x^(y-1)]dx+[(lnx)*x^y]dy

扩展资料

如果函数z=f(x, y) 在(x, y)处的全增量

Δz=f(x+Δx,y+Δy)-f(x,y)

可以表示为:

Δz=AΔx+BΔy+o(ρ),

其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x, y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即

dz=AΔx +BΔy

该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fkdwn
2011-06-27 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2583
采纳率:0%
帮助的人:1414万
展开全部
z=f(x,y)=x^y
则函数z=f(x, y) 在(x, y)处的全微分为:
dz=f'x(x, y)dx + f'y(x, y)dy
=[y*x^(y-1)]dx+[(lnx)*x^y]dy
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
妈妈说打911
2011-06-27 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1491
采纳率:0%
帮助的人:1631万
展开全部
dz=y*x^(y-1)dx+lnx*x^ydy
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友073406edd
2011-06-30 · TA获得超过1276个赞
知道小有建树答主
回答量:480
采纳率:0%
帮助的人:620万
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式