证明:设G是有限群,n整除|G|,且G中仅有一个n阶子群H,则H是G 的正规子群。

希望热心的网友快点作答~~~~~... 希望热心的网友快点作答~~~~~ 展开
玄色龙眼
2011-06-28 · 知道合伙人教育行家
玄色龙眼
知道合伙人教育行家
采纳数:4606 获赞数:28255
本科及研究生就读于北京大学数学科学学院

向TA提问 私信TA
展开全部
对于任意g属于G,考虑群N=gHg^(-1)
现在证N是群,首先可以得到的是N中元素个数与N中的元素个数相等
任取a,b属于N,则存在x,y属于H,使得
a=gxg^(-1),b=gyg^(-1)
所以ab^(-1) = gxg^(-1)gy^(1)g^(-1) = gxy^(-1)g^(-1)
而xy^(-1)属于H
所以ab^(-1)属于N
所以N是群
所以N也是G的n阶子群
而G只有一个n阶子群
所以N=H
所以H是G的正规子群
eeeee9527
2011-06-29
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
任意g属于G,考虑群N=gHg^(-1)
N中元素个数与H中的元素个数相等
任取a,b属于N,则存在x,y属于H,使得
a=gxg^(-1),b=gyg^(-1)
所以ab^(-1) = gxg^(-1)gy^(1)g^(-1) = gxy^(-1)g^(-1)
而xy^(-1)属于H
所以ab^(-1)属于N
所以N是群
所以N也是G的n阶子群
而G只有一个n阶子群
所以N=H
所以H是G的正规子群
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
200希望
2011-06-29
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
作点修改:对于任意g属于G,考虑群N=gHg^(-1)
现在证N是群,首先可以得到的是N中元素个数与H中的元素个数相等
任取a,b属于N,则存在x,y属于H,使得
a=gxg^(-1),b=gyg^(-1)
所以ab = gxg^(-1)gyg^(-1) = gxyg^(-1)
而xy属于H
所以ab属于N
所以N是群
所以N也是G的n阶子群
而G只有一个n阶子群
所以N=H
所以H是G的正规子群
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式