展开全部
1/1*2*3+1/2*3*4+……1/n(n+1)(n+2)
=1/2(1/1*2-1/2*3)+1/2(1/2*3-1/3*4)+...+1/2[1/n(n+1)-1/(n+1)(n+2)]
=1/2[1/1*2-1/2*3+1/2*3-1/3*4+...+1/n(n+1)-1/(n+1)(n+2)]
=1/2[1/1*2-1/(n+1)(n+2)]
=1/2*[(n+1)(n+2)-2]/2(n+1)(n+2)
=(n^2+3n)/4(n+1)(n+2)
=n(n+3)/[4(n+1)(n+2)]
=1/2(1/1*2-1/2*3)+1/2(1/2*3-1/3*4)+...+1/2[1/n(n+1)-1/(n+1)(n+2)]
=1/2[1/1*2-1/2*3+1/2*3-1/3*4+...+1/n(n+1)-1/(n+1)(n+2)]
=1/2[1/1*2-1/(n+1)(n+2)]
=1/2*[(n+1)(n+2)-2]/2(n+1)(n+2)
=(n^2+3n)/4(n+1)(n+2)
=n(n+3)/[4(n+1)(n+2)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询