平面内三角形ABC且角C为直角,AC=18,点P在平面外且到平面距离为40,PA=PB=PC,求P到BC的距离。
5个回答
展开全部
由点P在平面外且到平面距离为40,PA=PB=PC,可知
点P在三角形ABC外心的正上方,设三角形ABC外心为点D,因为为直角三角形 所以点D在直角三角形AB边上的中点,所以易得PD垂直于直角三角形平面 做DE垂直BC交BC于点E,所以BC垂直于平面DEP,可得EP垂直BC ,所以EP是所求的距离 因为DE为中位线 所以DE=0.5AC=9
根据勾股定理 EP^2=ED^2+PD^2=1600+9 EP=(根号1609)
希望对你有所帮助
点P在三角形ABC外心的正上方,设三角形ABC外心为点D,因为为直角三角形 所以点D在直角三角形AB边上的中点,所以易得PD垂直于直角三角形平面 做DE垂直BC交BC于点E,所以BC垂直于平面DEP,可得EP垂直BC ,所以EP是所求的距离 因为DE为中位线 所以DE=0.5AC=9
根据勾股定理 EP^2=ED^2+PD^2=1600+9 EP=(根号1609)
希望对你有所帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-14
展开全部
由点P在平面外且到平面距离为40,PA=PB=PC,可知
点P在三角形ABC外心的正上方,设三角形ABC外心为点D,因为为直角三角形 所以点D在直角三角形AB边上的中点,所以易得PD垂直于直角三角形平面 做DE垂直BC交BC于点E,所以BC垂直于平面DEP,可得EP垂直BC ,所以EP是所求的距离 因为DE为中位线 所以DE=0.5AC=9
根据勾股定理 EP^2=ED^2+PD^2=1600+9 EP=(根号1609)
点P在三角形ABC外心的正上方,设三角形ABC外心为点D,因为为直角三角形 所以点D在直角三角形AB边上的中点,所以易得PD垂直于直角三角形平面 做DE垂直BC交BC于点E,所以BC垂直于平面DEP,可得EP垂直BC ,所以EP是所求的距离 因为DE为中位线 所以DE=0.5AC=9
根据勾股定理 EP^2=ED^2+PD^2=1600+9 EP=(根号1609)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
eiπ 的答案是正确的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼上解释比较清晰
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询