3个回答
展开全部
原式
= (2-1)*2(2+1) + (3-1)*3*(3+1) + …… + (N+1-1)×(n+1)×(N+1+1)
= 2*(2² - 1) + 3(3² - 1) + …… + (N+1)*[(N+1)² - 1]
= 2³ - 2 + 3³ - 3 + …… + (N+1)³ - (N+1)
= 1³ + 2³ + 3³ + …… + (N+1)³ - [1 + 2 + 3 + …… + (N+1)]
= [(1+2+……+(n+1) ]^2 - (N+2)(N+1)/2
= (N+2)²(N+1)²/4 - (N+2)(N+1)/2
=(N^4 + 6N³ + 11N² + 6N )/4
其中用到了立方和公式
= (2-1)*2(2+1) + (3-1)*3*(3+1) + …… + (N+1-1)×(n+1)×(N+1+1)
= 2*(2² - 1) + 3(3² - 1) + …… + (N+1)*[(N+1)² - 1]
= 2³ - 2 + 3³ - 3 + …… + (N+1)³ - (N+1)
= 1³ + 2³ + 3³ + …… + (N+1)³ - [1 + 2 + 3 + …… + (N+1)]
= [(1+2+……+(n+1) ]^2 - (N+2)(N+1)/2
= (N+2)²(N+1)²/4 - (N+2)(N+1)/2
=(N^4 + 6N³ + 11N² + 6N )/4
其中用到了立方和公式
展开全部
1^3+2^3+3^3+4^3+……+n^3=(n+1)^2*n^2/4
n(n+1)(n+2)
=n (n+2)(n+1)
=(n^2+2n)(n+1)
=(n^2+2n+1-1)(n+1)
=[(n+1)^2-1](n+1)
=(n+1)^3-n-1
1×2×3+2×3×4+3×4×5+.......n×(n+1)×(n+2)
=1×2×3+2×3×4+3×4×5+.......n×(n+1)×(n+2)
=2^3-1-1+3^3-2-1+4^3-3-1+...........+(n+1)^3-n-1
=2^3+3^3+4^3+..........+(n+1)^3-n^2-n
=(n+1)^2*(n+2)^2/4-1^3-n^2-n
=(n+1)^2*(n+2)^2/4-n^2-n-1
n(n+1)(n+2)
=n (n+2)(n+1)
=(n^2+2n)(n+1)
=(n^2+2n+1-1)(n+1)
=[(n+1)^2-1](n+1)
=(n+1)^3-n-1
1×2×3+2×3×4+3×4×5+.......n×(n+1)×(n+2)
=1×2×3+2×3×4+3×4×5+.......n×(n+1)×(n+2)
=2^3-1-1+3^3-2-1+4^3-3-1+...........+(n+1)^3-n-1
=2^3+3^3+4^3+..........+(n+1)^3-n^2-n
=(n+1)^2*(n+2)^2/4-1^3-n^2-n
=(n+1)^2*(n+2)^2/4-n^2-n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-13
展开全部
1×2×3+2×3×4+3×4×5+.......n×(n+1)×(n+2)
=(N^4 + 6N³ + 11N² + 6N )/4
=(n+1)^2*(n+2)^2/4-n^2-n-1 一样吧
=(N^4 + 6N³ + 11N² + 6N )/4
=(n+1)^2*(n+2)^2/4-n^2-n-1 一样吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询