请大家帮帮忙,初中图形证明题,最好有详解

已知:如图,在四边形ABFC中,∠ACB=90度,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE(1)求证:四边形BECF是菱形(2)当∠A的大小为多少度时... 已知:如图,在四边形ABFC中,∠ACB=90度,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE (1)求证:四边形BECF是菱形 (2)当∠A的大小为多少度时,四边形BECF是正方形。 展开
Pixylove
2011-06-28
知道答主
回答量:9
采纳率:0%
帮助的人:6.9万
展开全部
(1)因为D为BC中点 所以,BD=DC
又因为EF垂直BC 所以角BDE=90°
因为角ACB=90°
所以DE//AC 所以DE为三角形ABC的中位线 DE平行且等于1/2AC
因为DE=1/2EF 所以EF平行且等于AC
所以四边形AEFC为平行四边形 所以CF//AE
因为E为AB中点 所以BE=AE
因为CF=AE 所以CF=BE
因为CF//BE 所以四边形BECF为平行四边形
因为EF垂直平分线BC 所以四边形BECF为菱形
(2)角A=45°时,四边形BECF为正方形
理由如下:
因为角A=45° 角ACB=90°,所以角ABC=45°
因为四边形BECF为菱形
又因为角CBE=45° 所以菱形BECF为正方形
都亦皓
2011-06-29
知道答主
回答量:10
采纳率:0%
帮助的人:1.6万
展开全部
自己多思考,这里提供思考这类题的过程。
首先要想到,这里E F两点的位置是不固定的。它们会根据斜边AB的变化而变化的。
其次要想到,斜边的变化就是角A的变化,∠A直接决定了菱形的“胖瘦”。
接下来想到,已知一条中垂线,若能证明另一条也是中垂线就可以得证。
由CF=AE 得到C点在EF中垂线上,同时根据三角形三线合一,很容易得到CD(也就是BC)是EF的垂直平分线,因而得证。
下一问题,要使得菱形是正方形,则必须让∠AEC成为直角,同时BE=EC必须满足则根据RT三角形斜边上中线等于斜边的一半得到ABC为等腰RT三角形。故A为45°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
神马是什么意思
2011-06-28 · TA获得超过718个赞
知道小有建树答主
回答量:804
采纳率:0%
帮助的人:323万
展开全部
证明如下 : ∠ACB=90 ∠BCE+∠ACE=90 ∠A+∠CBE=90 因为 那个垂直平分线 所以 ∠CBE=∠BCE 所以∠BCE+∠A=90 所以∠A=∠ACE所以AE=CE=CF 因为垂直平分线 可证四边相等 所以为菱形

∠A为45度 因为菱形对角线平分角 当∠A=45时 ∠CBA=∠FBC=45 即∠FBE=90 那么 BECF是正方形
有点省略 自己琢磨下就懂了 难在想不到 证明EC=AE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式