证明:设A是n阶可逆矩阵,证明:(1)A的伴随矩阵的逆矩阵=A逆矩阵的伴随矩阵(2) (A*)*=|A|的n-2乘以A
1个回答
展开全部
证明: (1)
由 AA* = |A|E
知 (A*)^-1 = (1/|A|)A
由 A^-1 (A^-1)* = |A^-1|E
知 (A^-1)* = |A^-1|A = (1/|A|)A
比较两式得
(A*)^-1 = (A^-1)*
(2) 由 A* (A*)* = |A*|E = |A|^(n-1) E
等式两边左乘A 得
AA* (A*)* = |A|^(n-1) A
由 AA* = |A|E
|A| (A*)* = |A|^(n-1) A
由A可逆得'
(A*)* = |A|^(n-2) A
满意请采纳
由 AA* = |A|E
知 (A*)^-1 = (1/|A|)A
由 A^-1 (A^-1)* = |A^-1|E
知 (A^-1)* = |A^-1|A = (1/|A|)A
比较两式得
(A*)^-1 = (A^-1)*
(2) 由 A* (A*)* = |A*|E = |A|^(n-1) E
等式两边左乘A 得
AA* (A*)* = |A|^(n-1) A
由 AA* = |A|E
|A| (A*)* = |A|^(n-1) A
由A可逆得'
(A*)* = |A|^(n-2) A
满意请采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询