高中数学圆锥曲线题目
椭圆中心在原点焦点在x轴离心率√10/5且过点A(√5,√3)1,求椭圆标准方程2,设斜率为√15/5的直线与椭圆交于PQ,求△APQ面积最大值...
椭圆中心在原点焦点在x轴 离心率√10/5 且过点A(√5,√3)
1,求椭圆标准方程 2,设斜率为√15/5的直线与椭圆交于PQ,求△APQ面积最大值 展开
1,求椭圆标准方程 2,设斜率为√15/5的直线与椭圆交于PQ,求△APQ面积最大值 展开
展开全部
设椭圆方程为x²/a²+y²/b²=1(a>b>0),
设焦距为2c,则c²=a²-b²,
离心率e=√10/5=c/a,e²=c²/a²=(a²-b²)/a²=1-b²/a²=10/25=2/5,
b²/a²=3/5,5/a²=3/b²,
把A点坐标(√5,√3)代入x²/a²+y²/b²=1得,5/a²+3/b²=1,2×5/a²=1,a²=10,b²=3a²/5=6,
椭圆标准方程为x²/10+y²/6=1.
设斜率为KPQ=√15/5的直线为y=(√15/5)x+m,代入x²/10+y²/6=1,
得6x²+2√15mx+5m²-30=0,
△=(2√15m)²-4×6×(5m²-30)=60(12-m²)>0,0≤m²<12
设P(x1,y1),Q(x2,y2),
则x1+x2=2√15m/6=√15m/3,x1+x2=(5m²-30)/6,
|PQ|=√[(X1-X2)²+(Y1-Y2)²]=√{[(1+(KPQ)²](x1-x2)²}=√{(1+3/5)[(x1+x2)²-4x1x2]}
=√{(8/5)[(√15m/3)²-4(5m²-30)/6]==√{(8/5)[(√15m/3)²-4(5m²-30)]}/6=2√[6(12-m²)]/3,
点A(√5,√3)到直线PQ:(√15/5)x-y+m=0的距离d=|(√15/5)√5-√3+m|/√[(√15/5)²+(-1)²]
=|m|/√(8/5)=√10|m|/4,
△APQ面积=(1/2)|PQ|d={2√[6(12-m²)]/3})(√10|m|/4)/2=√[15m²(12-m²)]/6=√{15[36-(m²-6)²]}/6,
当m²=6时,△APQ面积取最大值√15
设焦距为2c,则c²=a²-b²,
离心率e=√10/5=c/a,e²=c²/a²=(a²-b²)/a²=1-b²/a²=10/25=2/5,
b²/a²=3/5,5/a²=3/b²,
把A点坐标(√5,√3)代入x²/a²+y²/b²=1得,5/a²+3/b²=1,2×5/a²=1,a²=10,b²=3a²/5=6,
椭圆标准方程为x²/10+y²/6=1.
设斜率为KPQ=√15/5的直线为y=(√15/5)x+m,代入x²/10+y²/6=1,
得6x²+2√15mx+5m²-30=0,
△=(2√15m)²-4×6×(5m²-30)=60(12-m²)>0,0≤m²<12
设P(x1,y1),Q(x2,y2),
则x1+x2=2√15m/6=√15m/3,x1+x2=(5m²-30)/6,
|PQ|=√[(X1-X2)²+(Y1-Y2)²]=√{[(1+(KPQ)²](x1-x2)²}=√{(1+3/5)[(x1+x2)²-4x1x2]}
=√{(8/5)[(√15m/3)²-4(5m²-30)/6]==√{(8/5)[(√15m/3)²-4(5m²-30)]}/6=2√[6(12-m²)]/3,
点A(√5,√3)到直线PQ:(√15/5)x-y+m=0的距离d=|(√15/5)√5-√3+m|/√[(√15/5)²+(-1)²]
=|m|/√(8/5)=√10|m|/4,
△APQ面积=(1/2)|PQ|d={2√[6(12-m²)]/3})(√10|m|/4)/2=√[15m²(12-m²)]/6=√{15[36-(m²-6)²]}/6,
当m²=6时,△APQ面积取最大值√15
展开全部
1,设椭圆标准方程为x^2/a^2+y^2/b^2=1
由已知可得c/a=√10/5
5/a^2+3/b^2=1
a^2=b^2+c^2
解上面的方程得a^2=10
c^2=4
b^2=6
所以椭圆标准方程x^2/10+y^2/6=1
2,利用设而不求的思想
设直线方程为y=√15/5x+b(1)且-√6<=b<=√6(注:第二题的b和第一题的b不一样)
联立方程x^2/10+y^2/6=1(2)成方程组
把一试用y代入二式子化简后得6x^2+2√15bx+5b^2-30=0
韦达定理得x1+x2=-√15b/3 x1x2=(5b^2-30)/6
把一试用x代入二式子化简后得10y^2-30by/√15+3b^2-30=0
韦达定理得y1+y2=3b/√15 y1y2=(3b^2-30)/10
PQ两点间距离为AB=√[(x2-x1)^2 + (y2-y1)^2 ] =√[(x2+x1)^2 -2 x1x2+ (y2+y1)^2-2 y1y2] =4(把上面所求代入,b刚好消掉)
高为点A到直线PQ的距离d=|(√15/5)*√5-√3+b|/√((√15/5)^2+1) =√(5/8)|b|
则△APQ面积为(1/2)*4*√(5/8)|b|=2√(5/8)|b|
当|b|=√6时,△APQ面积取得最大值为√15
如果好的话请采纳,累死我了O(∩_∩)O~
由已知可得c/a=√10/5
5/a^2+3/b^2=1
a^2=b^2+c^2
解上面的方程得a^2=10
c^2=4
b^2=6
所以椭圆标准方程x^2/10+y^2/6=1
2,利用设而不求的思想
设直线方程为y=√15/5x+b(1)且-√6<=b<=√6(注:第二题的b和第一题的b不一样)
联立方程x^2/10+y^2/6=1(2)成方程组
把一试用y代入二式子化简后得6x^2+2√15bx+5b^2-30=0
韦达定理得x1+x2=-√15b/3 x1x2=(5b^2-30)/6
把一试用x代入二式子化简后得10y^2-30by/√15+3b^2-30=0
韦达定理得y1+y2=3b/√15 y1y2=(3b^2-30)/10
PQ两点间距离为AB=√[(x2-x1)^2 + (y2-y1)^2 ] =√[(x2+x1)^2 -2 x1x2+ (y2+y1)^2-2 y1y2] =4(把上面所求代入,b刚好消掉)
高为点A到直线PQ的距离d=|(√15/5)*√5-√3+b|/√((√15/5)^2+1) =√(5/8)|b|
则△APQ面积为(1/2)*4*√(5/8)|b|=2√(5/8)|b|
当|b|=√6时,△APQ面积取得最大值为√15
如果好的话请采纳,累死我了O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由c/a=√10/5可知c²=0.4a²,所以b²=a²-c²=0.6a²所以可设椭圆标准方程为x²/a²+y²/0.6a²=1,把A(√5,√3)代人得a²=10,所以椭圆标准方程为x²/10+y²/6=1
先给第一题,你追问咯
先给第一题,你追问咯
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询