2^2-1=2×1+1,3^2-2^2=2×2+1,4^2-3^2=2×3+1......(n+1)-n^2=2n+1
2^2-1=2×1+1,3^2-2^2=2×2+1,4^2-3^2=2×3+1......(n+1)-n^2=2n+1,由以上各式相加得1+2+3+...+n=n(n+1...
2^2-1=2×1+1,3^2-2^2=2×2+1,4^2-3^2=2×3+1......(n+1)-n^2=2n+1,由以上各式相加得1+2+3+...+n=n(n+1)/2.
类比(1)1^2+2^2+3^2+...+n^2 (2)1^2+3^2+5^2+...+99^2
根据那些式子用类比推理的方法证1、2问... 展开
类比(1)1^2+2^2+3^2+...+n^2 (2)1^2+3^2+5^2+...+99^2
根据那些式子用类比推理的方法证1、2问... 展开
2个回答
展开全部
(1)
利用立方差公式
n^3-(n-1)^3
=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全部相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)
=n^3+n^2+n(n+1)/2
=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
(2)
由(1)知1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
∴2^2+4^2+...+(2n)^2
=2^2(1^2+2^2+..+n^2)
= 4n(n+1)(2n+1)/6
1^2+2^2+...+(2n+1)^2 = (2n+1)(2n+2)(4n+3)/6
1^2+3^2+...+(2n+1)^2
= 1^2+2^2+...+(2n+1)^2 - ( 2^2+4^2+...+(2n)^2 )
=(2n+1)(2n+2)(4n+3)/6 - 4n(n+1)(2n+1)/6
=(2n+1)( n+1) (4n+3)/3 - 4n(n+1)(2n+1)/6
=[(n+1)(2n+1)/3 ] ( (4n+3) - 2n )
= (n+1)(2n+1) (2n+3)/3
1^2+3^2+5^2+...+99^2=50*99*101/3=50*33*101=166650.
利用立方差公式
n^3-(n-1)^3
=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全部相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)
=n^3+n^2+n(n+1)/2
=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
(2)
由(1)知1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
∴2^2+4^2+...+(2n)^2
=2^2(1^2+2^2+..+n^2)
= 4n(n+1)(2n+1)/6
1^2+2^2+...+(2n+1)^2 = (2n+1)(2n+2)(4n+3)/6
1^2+3^2+...+(2n+1)^2
= 1^2+2^2+...+(2n+1)^2 - ( 2^2+4^2+...+(2n)^2 )
=(2n+1)(2n+2)(4n+3)/6 - 4n(n+1)(2n+1)/6
=(2n+1)( n+1) (4n+3)/3 - 4n(n+1)(2n+1)/6
=[(n+1)(2n+1)/3 ] ( (4n+3) - 2n )
= (n+1)(2n+1) (2n+3)/3
1^2+3^2+5^2+...+99^2=50*99*101/3=50*33*101=166650.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询