已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数列

zxqsyr
2011-07-05 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
a(n+1)=(1+q)an-qa(n-1)
a(n+1)=an+qan-qa(n-1)
a(n+1)-an=qan-qa(n-1)
a(n+1)-an=q[an-a(n-1)]
[a(n+1)-an]/[an-a(n-1)]=q
所以an-a(n-1)是以q为等比数列
an-a(n-1)=(a2-a1)q^(n-1)
an-a(n-1)=q^(n-1)
a(n+1)-an=q^n

bn=a(n+1)-an=q^n
b(n-1)=q^(n-1)
bn/b(n-1)=q^n/q^(n-1)=q
所以{bn}是等比数列
呆头的鸵鸟
2011-07-05 · TA获得超过215个赞
知道答主
回答量:248
采纳率:0%
帮助的人:188万
展开全部
证明:由题设an+1=(1+q)an-qan-1(n≥2),得
an+1-an=q(an-an-1),
即bn=qbn-1,n≥2.
又b1=a2-a1=1,q≠0,
所以{bn}是首项为1,公比为q的等比数列.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sleepsleephh
2011-07-05 · TA获得超过556个赞
知道小有建树答主
回答量:92
采纳率:0%
帮助的人:130万
展开全部
把条件式等式左右同时减掉an,然后右侧提取q。
剩下的不解释……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式