设a、b为实数,对所有正整数n(≥2),a^n+b^n是有理数,证明:a+b是有理数

8826055
2011-07-08 · TA获得超过7508个赞
知道大有可为答主
回答量:1680
采纳率:81%
帮助的人:879万
展开全部
证明:注意到a^(3n)+b^(3n)=(a^n+b^n)(a^(2n)+b^(2n)-a^nb^n)
若a^n+b^n=0,如果n是偶数,那么a=b=0,a+b=0为有理数;如果n为奇数,那么a^n=(-b)^n,得a=-b,即a+b=0为有理数
若a^n+b^n≠0,a,b不都为0,那么a^(2n)+b^(2n)-a^nb^n=(a^(3n)+b^(3n))/(a^n+b^n),因为a^(3n)+b^(3n),a^n+b^n均为有理数,所以a^(2n)+b^(2n)-a^nb^n为有理数,即a^nb^n=(ab)^n为有理数(n≥2)
如果a,b中有一个为0,不妨设为a,那么b^n为有理数,b≠0,那么b=b^3/b^2为有理数,即a+b为有理数
如果a,b均不为0,即ab≠0,那么ab=(ab)^3/(ab)^2为有理数,再由a^3+b^3=(a+b)(a^2+b^2-ab)
,且a^3+b^3≠0知a+b=(a^3+b^3)/(a^2+b^2-ab)为有理数
综上所述a+b是有理数
wangcx_123
2011-07-06 · TA获得超过2147个赞
知道小有建树答主
回答量:453
采纳率:0%
帮助的人:492万
展开全部
a^6+b^6=(a^2+b^2)(a^4+b^4-a^2xb^2)
因为a^6+b^6、a^2+b^2是有理数
所以a^4+b^4-a^2xb^2是有理数
又a^4+b^4是有理数
所以a^2xb^2是有理数 从而ab是有理数

再由a^3+b^3=(a+b)(a^2+b^2-axb)
a^3+b^3、(a^2+b^2-axb)是有理数
故a+b是有理数
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式