一个组合恒等式的证明 Σ(k=0,n)C(n1,k)C(n2,n-k)=C(n1+n2,n)

FangYW
2011-07-07 · TA获得超过162个赞
知道答主
回答量:49
采纳率:0%
帮助的人:87.7万
展开全部
从定义就可以直接证明相等。右式是从n1+n2个物体中取出n个物体的方法总数。我把这些物体分成n1和n2的两堆,那么我在n1个物体中取0个同时在n2个物体取n个的方法总数,加上n1个物体取1个,n2中取n-1个等等,
而C(n1,k)C(n2,n-k)正是在1号堆里取k个,2号堆取n-k个的方法总数,所以把k=0,1...n的可能都加起来就等于C(n1+n2,n)了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式