在三角形ABC中,已知AB=AC,角A=角ACD=20°,D在AB上,角ABE=30°交线段AC与点E,
在三角形ABC中,已知AB=AC,角A=角ACD=20°,D在AB上,角ABE=30°交线段AC与点E,连接ED,CD,求角CDE的度数!求解!各位高手速度!我在线等...
在三角形ABC中,已知AB=AC,角A=角ACD=20°,D在AB上,角ABE=30°交线段AC与点E,连接ED,CD,求角CDE的度数!求解!各位高手速度!我在线等
展开
展开全部
解:因为AB=AC,∠A=20°,所以,∠ABC=∠ACB=(180°-20°)/2=80°.
所以,∠CBE=50°.又∠BEC=∠A+∠ABE=20°+30°=50°,
所以,∠CBE=∠BEC,所以,BC=CE.
以CB为一边在形内作∠BCF=20°,CF交AB于点F,连结EF,则∠ECF=60°,
∠BFC=180°-∠FBC-∠BCF=80°,
所以,CF=BC=CE.
所以,三角形CEF是等边三角形,所以,EF=CF,∠EFC=60°.
所以,∠DFE=180°-∠BFC-∠CFE=180°-80°-60°=40°.
又因为∠DCF=∠ACB-∠ACD-∠BCF=80°-20°-20°=40°,
∠FDC=∠A+∠ACD=20°+20°=40°,
所以,∠DCF=∠FDC,
所以,FD=CF=EF.
所以,∠FDE=(180°-∠DFE)/2=(180°-40°)/2=70°.
又在三角形BCD中,∠BDC=180°-∠DBC-∠BCD=180°-80°-60°=40°,
所以,∠CDE=∠FDE-∠BDC=70°-40°=30°.
所以,∠CBE=50°.又∠BEC=∠A+∠ABE=20°+30°=50°,
所以,∠CBE=∠BEC,所以,BC=CE.
以CB为一边在形内作∠BCF=20°,CF交AB于点F,连结EF,则∠ECF=60°,
∠BFC=180°-∠FBC-∠BCF=80°,
所以,CF=BC=CE.
所以,三角形CEF是等边三角形,所以,EF=CF,∠EFC=60°.
所以,∠DFE=180°-∠BFC-∠CFE=180°-80°-60°=40°.
又因为∠DCF=∠ACB-∠ACD-∠BCF=80°-20°-20°=40°,
∠FDC=∠A+∠ACD=20°+20°=40°,
所以,∠DCF=∠FDC,
所以,FD=CF=EF.
所以,∠FDE=(180°-∠DFE)/2=(180°-40°)/2=70°.
又在三角形BCD中,∠BDC=180°-∠DBC-∠BCD=180°-80°-60°=40°,
所以,∠CDE=∠FDE-∠BDC=70°-40°=30°.
参考资料: http://iask.sina.com.cn/b/1916102.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询