
求微分方程y'''-2y''+y'-2y=0 的通解
展开全部
y"-y'-2y=0
特征方程x^2-x-2=0有两个实数根,x=-1,x=2
所以方程的解是y=c1e^2t+c2e^-t
c1,c2是任意常数
特征方程x^2-x-2=0有两个实数根,x=-1,x=2
所以方程的解是y=c1e^2t+c2e^-t
c1,c2是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200