求函数f(x)=x平方-2ax-1在[0,2]上的最大值
2011-07-14 · 知道合伙人教育行家
关注
展开全部
f(x)=x^2-2ax-1开口向上,对称轴x=-(-2a)/2=a
当a<1时,f(x)在【0,2】上或者单调增,或者非单调但是x=2距离对称轴远,∴f(x)max=f(2)=2^2-4a-1=3-4a
当a>时,f(x)在【0,2】上或者单调减,或者非单调但是x=0=距离对称轴远,∴f(x)max=f(0)=0-0-1=-1
当a=1时,f(max)=f(2)=f(0)=3-4a=-1
当a<1时,f(x)在【0,2】上或者单调增,或者非单调但是x=2距离对称轴远,∴f(x)max=f(2)=2^2-4a-1=3-4a
当a>时,f(x)在【0,2】上或者单调减,或者非单调但是x=0=距离对称轴远,∴f(x)max=f(0)=0-0-1=-1
当a=1时,f(max)=f(2)=f(0)=3-4a=-1
展开全部
f(x)=x平方-2ax-1在[0,2]上的最大值
f(x)=x^2-2ax+a^2-a^2-1
=(x-a)^2-a^2-1
1.a<=0
最大值f(2)=4-4a-1=3-4a
2.a>=2
最大值f(0)=-1
3.0<a<=1
最大值f(2)=3-4a
4.a>1
最大值f(0)=-1
综上
1.a<=1
最大值f(2)=3-4a
2.a>1
最大值f(0)=-1
f(x)=x^2-2ax+a^2-a^2-1
=(x-a)^2-a^2-1
1.a<=0
最大值f(2)=4-4a-1=3-4a
2.a>=2
最大值f(0)=-1
3.0<a<=1
最大值f(2)=3-4a
4.a>1
最大值f(0)=-1
综上
1.a<=1
最大值f(2)=3-4a
2.a>1
最大值f(0)=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对称轴是X=a
若a<=0 最大值=F(2)=3-4a
若0<a<1 最大值=F(3)=8-6a
若a=1 最大值=f(0)=f(2)=-1
若1<a<2 最大值=f(0)=-1
若a>=2 最大值=f(0)=-1
若a<=0 最大值=F(2)=3-4a
若0<a<1 最大值=F(3)=8-6a
若a=1 最大值=f(0)=f(2)=-1
若1<a<2 最大值=f(0)=-1
若a>=2 最大值=f(0)=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
动轴定区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询