函数y=sin(2x-π÷3)-sin2x的一个单调递增区间详解过程
3个回答
2011-07-14
展开全部
解:y=sin(2x-π/3)-sin2x
=sin2xcos2∏/3-cos2xsin∏/3-sin2x
=1/2sin2x-cos2xsin∏/3-sin2x
=-(sin2xcos2∏/3+cos2xsin∏/3)
=-sin(2X+π/3)
所以函数y=sin(2x-π÷3)-sin2x的一个单调递增区间为y=-sin(2x+∏/3)的减区间
当2Kπ+π/2<=(2X+π/3)<=2Kπ +3π/2时
y=sin(2x-π/3)-sin2x的一个单调递增区间为{Kπ+π/12,Kπ+7π/12}
=sin2xcos2∏/3-cos2xsin∏/3-sin2x
=1/2sin2x-cos2xsin∏/3-sin2x
=-(sin2xcos2∏/3+cos2xsin∏/3)
=-sin(2X+π/3)
所以函数y=sin(2x-π÷3)-sin2x的一个单调递增区间为y=-sin(2x+∏/3)的减区间
当2Kπ+π/2<=(2X+π/3)<=2Kπ +3π/2时
y=sin(2x-π/3)-sin2x的一个单调递增区间为{Kπ+π/12,Kπ+7π/12}
追问
谢谢了
追答
2Kπ+π/2<=(2X+π/3)<=2Kπ +3π/2
2kπ+π/6<=2x<=2kπ+7π
Kπ+π/12<=x<=Kπ+7π/12
展开全部
y=sin(2x-π/3)-sin2x
=2 cos[(2x-π/3+2x)/2] sin[(2x-π/3-2x)/2]
=2 cos(2x-π/6) sin(-π/6)
=- cos(2x-π/6)
=- cos(2x-π/6)
单调递增区间:
2kπ<=2x-π/6<=2kπ+3π/2
2kπ+π/6<=2x<=2kπ+3π/2+π/6
2kπ+π/6<=2x<=2kπ+5π/3
kπ+π/12<=x<=kπ+5π/6
=2 cos[(2x-π/3+2x)/2] sin[(2x-π/3-2x)/2]
=2 cos(2x-π/6) sin(-π/6)
=- cos(2x-π/6)
=- cos(2x-π/6)
单调递增区间:
2kπ<=2x-π/6<=2kπ+3π/2
2kπ+π/6<=2x<=2kπ+3π/2+π/6
2kπ+π/6<=2x<=2kπ+5π/3
kπ+π/12<=x<=kπ+5π/6
追问
谢谢了
追答
单调递增区间:
2kπ<=2x-π/6<=2kπ+π
2kπ+π/6<=2x<=2kπ+π+π/6
2kπ+π/6<=2x<=2kπ+7π/6
kπ+π/12<=x<=kπ+7π/12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:y=sin2x-sin(2x-π/3) =2cos(π/3)sin2x-[sin2xcos(π/3)-则不妨令k=0,可得函数的一个单调递增区间为[-5π/12, π/12] 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询