2011年浙江理科高考数学第21题
展开全部
(21)(21)(本题满分15分)已知抛物线=,圆的圆心为点M。
(Ⅰ)求点M到抛物线的准线的距离;
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂足于AB,求直线的方程.
(Ⅰ)解:由题意可知,抛物线的准线方程为:所以圆心M(0,4)到抛物线的距离是
(Ⅱ)解:设P(x0, x02),A()B(),由题意得设过点P的圆C2的切线方程为y-x0=k(x- x0)
即, ①
则
即
设PA,PB的斜率为,则是上述方程的两根,所以
,
将①代入得,
由于是此方程的根,故所以
由MP⊥AB,得,解得
即点P的坐标为,所以直线l的方程为。 (请下载原试题)
(Ⅰ)求点M到抛物线的准线的距离;
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂足于AB,求直线的方程.
(Ⅰ)解:由题意可知,抛物线的准线方程为:所以圆心M(0,4)到抛物线的距离是
(Ⅱ)解:设P(x0, x02),A()B(),由题意得设过点P的圆C2的切线方程为y-x0=k(x- x0)
即, ①
则
即
设PA,PB的斜率为,则是上述方程的两根,所以
,
将①代入得,
由于是此方程的根,故所以
由MP⊥AB,得,解得
即点P的坐标为,所以直线l的方程为。 (请下载原试题)
追问
解释一下哇,非常感谢
追答
图片
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询